iroh_gossip/
proto.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
//! Implementation of the iroh-gossip protocol, as an IO-less state machine
//!
//! This module implements the iroh-gossip protocol. The entry point is [`State`], which contains
//! the protocol state for a node.
//!
//! The iroh-gossip protocol is made up from two parts: A swarm membership protocol, based on
//! [HyParView][hyparview], and a gossip broadcasting protocol, based on [PlumTree][plumtree].
//!
//! For a full explanation it is recommended to read the two papers. What follows is a brief
//! outline of the protocols.
//!
//! All protocol messages are namespaced by a [`TopicId`], a 32 byte identifier. Topics are
//! separate swarms and broadcast scopes. The HyParView and PlumTree algorithms both work in the
//! scope of a single topic. Thus, joining multiple topics increases the number of open connections
//! to peers and the size of the local routing table.
//!
//! The **membership protocol** ([HyParView][hyparview]) is a cluster protocol where each peer
//! maintains a partial view of all nodes in the swarm.
//! A peer joins the swarm for a topic by connecting to any known peer that is a member of this
//! topic's swarm. Obtaining this initial contact info happens out of band. The peer then sends
//! a `Join` message to that initial peer. All peers maintain a list of
//! `active` and `passive` peers. Active peers are those that you maintain active connections to.
//! Passive peers is an addressbook of additional peers. If one of your active peers goes offline,
//! its slot is filled with a random peer from the passive set. In the default configuration, the
//! active view has a size of 5 and the passive view a size of 30.
//! The HyParView protocol ensures that active connections are always bidirectional, and regularly
//! exchanges nodes for the passive view in a `Shuffle` operation.
//! Thus, this protocol exposes a high degree of reliability and auto-recovery in the case of node
//! failures.
//!
//! The **gossip protocol** ([PlumTree][plumtree]) builds upon the membership protocol. It exposes
//! a method to broadcast messages to all peers in the swarm. On each node, it maintains two sets
//! of peers: An `eager` set and a `lazy` set. Both are subsets of the `active` view from the
//! membership protocol. When broadcasting a message from the local node, or upon receiving a
//! broadcast message, the message is pushed to all peers in the eager set. Additionally, the hash
//! of the message (which uniquely identifies it), but not the message content, is lazily pushed
//! to all peers  in the `lazy` set. When receiving such lazy pushes (called `Ihaves`), those peers
//! may request the message content after a timeout if they didn't receive the message by one of
//! their eager peers before. When requesting a message from a currently-lazy peer, this peer is
//! also upgraded to be an eager peer from that moment on. This strategy self-optimizes the
//! messaging graph by latency. Note however that this optimization will work best if the messaging
//! paths are stable, i.e. if it's always the same peer that broadcasts. If not, the relative
//! message redundancy will grow and the ideal messaging graph might change frequently.
//!
//! [hyparview]: https://asc.di.fct.unl.pt/~jleitao/pdf/dsn07-leitao.pdf
//! [plumtree]: https://asc.di.fct.unl.pt/~jleitao/pdf/srds07-leitao.pdf

use std::{fmt, hash::Hash};

use bytes::Bytes;
use serde::{de::DeserializeOwned, Deserialize, Serialize};

mod hyparview;
mod plumtree;
pub mod state;
pub mod topic;
pub mod util;

#[cfg(test)]
mod tests;

pub use hyparview::Config as HyparviewConfig;
pub use plumtree::{Config as PlumtreeConfig, DeliveryScope, Scope};
pub use state::{InEvent, Message, OutEvent, State, Timer, TopicId};
pub use topic::{Command, Config, Event, IO};

/// The identifier for a peer.
///
/// The protocol implementation is generic over this trait. When implementing the protocol,
/// a concrete type must be chosen that will then be used throughout the implementation to identify
/// and index individual peers.
///
/// Note that the concrete type will be used in protocol messages. Therefore, implementations of
/// the protocol are only compatible if the same concrete type is supplied for this trait.
///
/// TODO: Rename to `PeerId`? It does not necessarily refer to a peer's address, as long as the
/// networking layer can translate the value of its concrete type into an address.
pub trait PeerIdentity: Hash + Eq + Copy + fmt::Debug + Serialize + DeserializeOwned {}
impl<T> PeerIdentity for T where T: Hash + Eq + Copy + fmt::Debug + Serialize + DeserializeOwned {}

/// Opaque binary data that is transmitted on messages that introduce new peers.
///
/// Implementations may use these bytes to supply addresses or other information needed to connect
/// to a peer that is not included in the peer's [`PeerIdentity`].
#[derive(derive_more::Debug, Serialize, Deserialize, Clone, PartialEq, Eq, Default)]
#[debug("PeerData({}b)", self.0.len())]
pub struct PeerData(Bytes);

impl PeerData {
    /// Create a new [`PeerData`] from a byte buffer.
    pub fn new(data: impl Into<Bytes>) -> Self {
        Self(data.into())
    }

    /// Get a reference to the contained [`bytes::Bytes`].
    pub fn inner(&self) -> &bytes::Bytes {
        &self.0
    }

    /// Get the peer data as a byte slice.
    pub fn as_bytes(&self) -> &[u8] {
        &self.0
    }

    /// Returns true if the peer data is empty.
    pub fn is_empty(&self) -> bool {
        self.0.is_empty()
    }
}

/// PeerInfo contains a peer's identifier and the opaque peer data as provided by the implementer.
#[derive(Debug, Serialize, Deserialize, Clone, PartialEq, Eq)]
struct PeerInfo<PI> {
    pub id: PI,
    pub data: Option<PeerData>,
}

impl<PI> From<(PI, Option<PeerData>)> for PeerInfo<PI> {
    fn from((id, data): (PI, Option<PeerData>)) -> Self {
        Self { id, data }
    }
}

#[cfg(test)]
mod test {

    use std::{collections::HashSet, env};

    use n0_future::time::Instant;
    use rand::SeedableRng;
    use tracing_test::traced_test;

    use super::{Command, Config, Event, State};
    use crate::proto::{
        tests::{
            assert_synchronous_active, report_round_distribution, sort, Network, Simulator,
            SimulatorConfig,
        },
        Scope, TopicId,
    };

    #[test]
    #[traced_test]
    fn hyparview_smoke() {
        // Create a network with 4 nodes and active_view_capacity 2
        let mut config = Config::default();
        config.membership.active_view_capacity = 2;
        let mut network = Network::new(Instant::now());
        let rng = rand_chacha::ChaCha12Rng::seed_from_u64(99);
        for i in 0..4 {
            network.push(State::new(
                i,
                Default::default(),
                config.clone(),
                rng.clone(),
            ));
        }

        let t: TopicId = [0u8; 32].into();

        // Do some joins between nodes 0,1,2
        network.command(0, t, Command::Join(vec![1]));
        network.command(0, t, Command::Join(vec![2]));
        network.command(1, t, Command::Join(vec![2]));
        network.command(2, t, Command::Join(vec![]));
        network.ticks(10);

        // Confirm emitted events
        let actual = network.events_sorted();
        let expected = sort(vec![
            (0, t, Event::NeighborUp(1)),
            (0, t, Event::NeighborUp(2)),
            (1, t, Event::NeighborUp(2)),
            (1, t, Event::NeighborUp(0)),
            (2, t, Event::NeighborUp(0)),
            (2, t, Event::NeighborUp(1)),
        ]);
        assert_eq!(actual, expected);

        // Confirm active connections
        assert_eq!(network.conns(), vec![(0, 1), (0, 2), (1, 2)]);

        // Now let node 3 join node 0.
        // Node 0 is full, so it will disconnect from either node 1 or node 2.
        network.command(3, t, Command::Join(vec![0]));
        network.ticks(10);

        // Confirm emitted events. There's two options because whether node 0 disconnects from
        // node 1 or node 2 is random.
        let actual = network.events_sorted();
        eprintln!("actual {actual:?}");
        let expected1 = sort(vec![
            (3, t, Event::NeighborUp(0)),
            (0, t, Event::NeighborUp(3)),
            (0, t, Event::NeighborDown(1)),
            (1, t, Event::NeighborDown(0)),
        ]);
        let expected2 = sort(vec![
            (3, t, Event::NeighborUp(0)),
            (0, t, Event::NeighborUp(3)),
            (0, t, Event::NeighborDown(2)),
            (2, t, Event::NeighborDown(0)),
        ]);
        assert!((actual == expected1) || (actual == expected2));

        // Confirm active connections.
        if actual == expected1 {
            assert_eq!(network.conns(), vec![(0, 2), (0, 3), (1, 2)]);
        } else {
            assert_eq!(network.conns(), vec![(0, 1), (0, 3), (1, 2)]);
        }
        assert!(assert_synchronous_active(&network));
    }

    #[test]
    #[traced_test]
    fn plumtree_smoke() {
        let config = Config::default();
        let mut network = Network::new(Instant::now());
        let broadcast_ticks = 12;
        let join_ticks = 13;
        // build a network with 6 nodes
        let rng = rand_chacha::ChaCha12Rng::seed_from_u64(99);
        for i in 0..6 {
            network.push(State::new(
                i,
                Default::default(),
                config.clone(),
                rng.clone(),
            ));
        }

        let t = [0u8; 32].into();

        // let node 0 join the topic but do not connect to any peers
        network.command(0, t, Command::Join(vec![]));
        // connect nodes 1 and 2 to node 0
        (1..3).for_each(|i| network.command(i, t, Command::Join(vec![0])));
        // connect nodes 4 and 5 to node 3
        network.command(3, t, Command::Join(vec![]));
        (4..6).for_each(|i| network.command(i, t, Command::Join(vec![3])));
        // run ticks and drain events
        network.ticks(join_ticks);
        let _ = network.events();
        assert!(assert_synchronous_active(&network));

        // now broadcast a first message
        network.command(
            1,
            t,
            Command::Broadcast(b"hi1".to_vec().into(), Scope::Swarm),
        );
        network.ticks(broadcast_ticks);
        let events = network.events();
        let received = events.filter(|x| matches!(x, (_, _, Event::Received(_))));
        // message should be received by two other nodes
        assert_eq!(received.count(), 2);
        assert!(assert_synchronous_active(&network));

        // now connect the two sections of the swarm
        network.command(2, t, Command::Join(vec![5]));
        network.ticks(join_ticks);
        let _ = network.events();
        report_round_distribution(&network);

        // now broadcast again
        network.command(
            1,
            t,
            Command::Broadcast(b"hi2".to_vec().into(), Scope::Swarm),
        );
        network.ticks(broadcast_ticks);
        let events = network.events();
        let received = events.filter(|x| matches!(x, (_, _, Event::Received(_))));
        // message should be received by all 5 other nodes
        assert_eq!(received.count(), 5);
        assert!(assert_synchronous_active(&network));
        report_round_distribution(&network);
    }

    #[test]
    #[traced_test]
    fn big_multiple_sender() {
        let mut gossip_config = Config::default();
        gossip_config.broadcast.optimization_threshold = (read_var("OPTIM", 7) as u16).into();
        let config = SimulatorConfig {
            peers_count: read_var("PEERS", 100),
            ..Default::default()
        };
        let rounds = read_var("ROUNDS", 10);
        let mut simulator = Simulator::new(config, gossip_config);
        simulator.init();
        simulator.bootstrap();
        for i in 0..rounds {
            let from = i + 1;
            let message = format!("m{i}").into_bytes().into();
            simulator.gossip_round(from, message)
        }
        simulator.report_round_sums();
    }

    #[test]
    #[traced_test]
    fn big_single_sender() {
        let mut gossip_config = Config::default();
        gossip_config.broadcast.optimization_threshold = (read_var("OPTIM", 7) as u16).into();
        let config = SimulatorConfig {
            peers_count: read_var("PEERS", 100),
            ..Default::default()
        };
        let rounds = read_var("ROUNDS", 10);
        let mut simulator = Simulator::new(config, gossip_config);
        simulator.init();
        simulator.bootstrap();
        for i in 0..rounds {
            let from = 2;
            let message = format!("m{i}").into_bytes().into();
            simulator.gossip_round(from, message)
        }
        simulator.report_round_sums();
    }

    #[test]
    #[traced_test]
    fn quit() {
        // Create a network with 4 nodes and active_view_capacity 2
        let mut config = Config::default();
        config.membership.active_view_capacity = 2;
        let mut network = Network::new(Instant::now());
        let num = 4;
        let rng = rand_chacha::ChaCha12Rng::seed_from_u64(99);
        for i in 0..num {
            network.push(State::new(
                i,
                Default::default(),
                config.clone(),
                rng.clone(),
            ));
        }

        let t: TopicId = [0u8; 32].into();

        // join all nodes
        network.command(0, t, Command::Join(vec![]));
        network.command(1, t, Command::Join(vec![0]));
        network.command(2, t, Command::Join(vec![1]));
        network.command(3, t, Command::Join(vec![2]));
        network.ticks(10);

        // assert all peers appear in the connections
        let all_conns: HashSet<i32> = HashSet::from_iter((0..4).flat_map(|pa| {
            network
                .get_active(&pa, &t)
                .unwrap()
                .into_iter()
                .flat_map(|x| x.into_iter())
        }));
        assert_eq!(all_conns, HashSet::from_iter([0, 1, 2, 3]));
        assert!(assert_synchronous_active(&network));

        //  let node 3 leave the swarm
        network.command(3, t, Command::Quit);
        network.ticks(4);
        assert!(network.peer(&3).unwrap().state(&t).is_none());

        // assert all peers without peer 3 appear in the connections
        let all_conns: HashSet<i32> = HashSet::from_iter((0..num).flat_map(|pa| {
            network
                .get_active(&pa, &t)
                .unwrap()
                .into_iter()
                .flat_map(|x| x.into_iter())
        }));
        assert_eq!(all_conns, HashSet::from_iter([0, 1, 2]));
        assert!(assert_synchronous_active(&network));
    }

    fn read_var(name: &str, default: usize) -> usize {
        env::var(name)
            .unwrap_or_else(|_| default.to_string())
            .parse()
            .unwrap()
    }
}