iroh_gossip/proto/plumtree.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
//! Implementation of the Plumtree epidemic broadcast tree protocol
//!
//! The implementation is based on [this paper][paper] by Joao Leitao, Jose Pereira, Luıs Rodrigues
//! and the [example implementation][impl] by Bartosz Sypytkowski
//!
//! [paper]: https://asc.di.fct.unl.pt/~jleitao/pdf/srds07-leitao.pdf
//! [impl]: https://gist.github.com/Horusiath/84fac596101b197da0546d1697580d99
use std::{
collections::{HashMap, HashSet, VecDeque},
hash::Hash,
};
use bytes::Bytes;
use derive_more::{Add, From, Sub};
use n0_future::time::{Duration, Instant};
use serde::{Deserialize, Serialize};
use tracing::warn;
use super::{
util::{idbytes_impls, TimeBoundCache},
PeerIdentity, IO,
};
/// A message identifier, which is the message content's blake3 hash.
#[derive(Serialize, Deserialize, Clone, Hash, Copy, PartialEq, Eq)]
pub struct MessageId([u8; 32]);
idbytes_impls!(MessageId, "MessageId");
impl MessageId {
/// Create a `[MessageId]` by hashing the message content.
///
/// This hashes the input with [`blake3::hash`].
pub fn from_content(message: &[u8]) -> Self {
Self::from(blake3::hash(message))
}
}
/// Events Plumtree is informed of from the peer sampling service and IO layer.
#[derive(Debug)]
pub enum InEvent<PI> {
/// A [`Message`] was received from the peer.
RecvMessage(PI, Message),
/// Broadcast the contained payload to the given scope.
Broadcast(Bytes, Scope),
/// A timer has expired.
TimerExpired(Timer),
/// New member `PI` has joined the topic.
NeighborUp(PI),
/// Peer `PI` has disconnected from the topic.
NeighborDown(PI),
}
/// Events Plumtree emits.
#[derive(Debug, PartialEq, Eq)]
pub enum OutEvent<PI> {
/// Ask the IO layer to send a [`Message`] to peer `PI`.
SendMessage(PI, Message),
/// Schedule a [`Timer`].
ScheduleTimer(Duration, Timer),
/// Emit an [`Event`] to the application.
EmitEvent(Event<PI>),
}
/// Kinds of timers Plumtree needs to schedule.
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum Timer {
/// Request the content for [`MessageId`] by sending [`Message::Graft`].
///
/// The message will be sent to a peer that sent us an [`Message::IHave`] for this [`MessageId`],
/// which will send us the message content in reply and also move the peer into the eager set.
/// Will be a no-op if the message for [`MessageId`] was already received from another peer by now.
SendGraft(MessageId),
/// Dispatch the [`Message::IHave`] in our lazy push queue.
DispatchLazyPush,
/// Evict the message cache
EvictCache,
}
/// Event emitted by the [`State`] to the application.
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum Event<PI> {
/// A new gossip message was received.
Received(GossipEvent<PI>),
}
#[derive(Clone, derive_more::Debug, PartialEq, Eq, Ord, PartialOrd, Serialize, Deserialize)]
pub struct GossipEvent<PI> {
/// The content of the gossip message.
#[debug("<{}b>", content.len())]
pub content: Bytes,
/// The peer that we received the gossip message from. Note that this is not the peer that
/// originally broadcasted the message, but the peer before us in the gossiping path.
pub delivered_from: PI,
/// The broadcast scope of the message.
pub scope: DeliveryScope,
}
impl<PI> GossipEvent<PI> {
fn from_message(message: &Gossip, from: PI) -> Self {
Self {
content: message.content.clone(),
scope: message.scope,
delivered_from: from,
}
}
}
/// Number of delivery hops a message has taken.
#[derive(
From, Add, Sub, Serialize, Deserialize, Eq, PartialEq, PartialOrd, Ord, Clone, Copy, Debug, Hash,
)]
pub struct Round(u16);
impl Round {
pub fn next(&self) -> Round {
Round(self.0 + 1)
}
}
/// Messages that we can send and receive from peers within the topic.
#[derive(Debug, Serialize, Deserialize, Clone, PartialEq, Eq)]
pub enum Message {
/// When receiving Gossip, emit as event and forward full message to eager peer and (after a
/// delay) message IDs to lazy peers.
Gossip(Gossip),
/// When receiving Prune, move the peer from the eager to the lazy set.
Prune,
/// When receiving Graft, move the peer to the eager set and send the full content for the
/// included message ID.
Graft(Graft),
/// When receiving IHave, do nothing initially, and request the messages for the included
/// message IDs after some time if they aren't pushed eagerly to us.
IHave(Vec<IHave>),
}
/// Payload messages transmitted by the protocol.
#[derive(Serialize, Deserialize, Clone, derive_more::Debug, PartialEq, Eq)]
pub struct Gossip {
/// Id of the message.
id: MessageId,
/// Message contents.
#[debug("<{}b>", content.len())]
content: Bytes,
/// Scope to broadcast to.
scope: DeliveryScope,
}
impl Gossip {
fn round(&self) -> Option<Round> {
match self.scope {
DeliveryScope::Swarm(round) => Some(round),
DeliveryScope::Neighbors => None,
}
}
}
/// The scope to deliver the message to.
#[derive(Serialize, Deserialize, Clone, Debug, PartialEq, Eq, Ord, PartialOrd, Copy)]
pub enum DeliveryScope {
/// This message was received from the swarm, with a distance (in hops) travelled from the
/// original broadcaster.
Swarm(Round),
/// This message was received from a direct neighbor that broadcasted the message to neighbors
/// only.
Neighbors,
}
impl DeliveryScope {
/// Whether this message was directly received from its publisher.
pub fn is_direct(&self) -> bool {
matches!(self, Self::Neighbors | Self::Swarm(Round(0)))
}
}
/// The broadcast scope of a gossip message.
#[derive(Serialize, Deserialize, Clone, Debug, PartialEq, Eq, Ord, PartialOrd, Copy)]
pub enum Scope {
/// The message is broadcast to all peers in the swarm.
Swarm,
/// The message is broadcast only to the immediate neighbors of a peer.
Neighbors,
}
impl Gossip {
/// Get a clone of this `Gossip` message and increase the delivery round by 1.
pub fn next_round(&self) -> Option<Gossip> {
match self.scope {
DeliveryScope::Neighbors => None,
DeliveryScope::Swarm(round) => Some(Gossip {
id: self.id,
content: self.content.clone(),
scope: DeliveryScope::Swarm(round.next()),
}),
}
}
/// Validate that the message id is the blake3 hash of the message content.
pub fn validate(&self) -> bool {
let expected = MessageId::from_content(&self.content);
expected == self.id
}
}
/// Control message to inform peers we have a message without transmitting the whole payload.
#[derive(Debug, Serialize, Deserialize, Clone, PartialEq, Eq)]
pub struct IHave {
/// Id of the message.
id: MessageId,
/// Delivery round of the message.
round: Round,
}
/// Control message to signal a peer that they have been moved to the eager set, and to ask the
/// peer to do the same with this node.
#[derive(Debug, Serialize, Deserialize, Clone, PartialEq, Eq)]
pub struct Graft {
/// Message id that triggers the graft, if any.
/// On receiving a graft, the payload message must be sent in reply if a message id is set.
id: Option<MessageId>,
/// Delivery round of the [`Message::IHave`] that triggered this Graft message.
round: Round,
}
/// Configuration for the gossip broadcast layer.
///
/// Currently, the expectation is that the configuration is the same for all peers in the
/// network (as recommended in the paper).
#[derive(Clone, Debug)]
pub struct Config {
/// When receiving an [`IHave`] message, this timeout is registered. If the message for the
/// [`IHave`] was not received once the timeout is expired, a [`Graft`] message is sent to the
/// peer that sent us the [`IHave`] to request the message payload.
///
/// The plumtree paper notes:
/// > The timeout value is a protocol parameter that should be configured considering the
/// > diameter of the overlay and a target maximum recovery latency, defined by the application
/// > requirements. (p.8)
pub graft_timeout_1: Duration,
/// This timeout is registered when sending a [`Graft`] message. If a reply has not been
/// received once the timeout expires, we send another [`Graft`] message to the next peer that
/// sent us an [`IHave`] for this message.
///
/// The plumtree paper notes:
/// > This second timeout value should be smaller that the first, in the order of an average
/// > round trip time to a neighbor.
pub graft_timeout_2: Duration,
/// Timeout after which [`IHave`] messages are pushed to peers.
pub dispatch_timeout: Duration,
/// The protocol performs a tree optimization, which promotes lazy peers to eager peers if the
/// [`Message::IHave`] messages received from them have a lower number of hops from the
/// message's origin as the [`InEvent::Broadcast`] messages received from our eager peers. This
/// parameter is the number of hops that the lazy peers must be closer to the origin than our
/// eager peers to be promoted to become an eager peer.
pub optimization_threshold: Round,
/// Duration for which to keep gossip messages in the internal message cache.
///
/// Messages broadcast from this node or received from other nodes are kept in an internal
/// cache for this duration before being evicted. If this is too low, other nodes will not be
/// able to retrieve messages once they need them. If this is high, the cache will grow.
///
/// Should be at least around several round trip times to peers.
pub message_cache_retention: Duration,
/// Duration for which to keep the [`MessageId`]s for received messages.
///
/// Should be at least as long as [`Self::message_cache_retention`], usually will be longer to
/// not accidentally receive messages multiple times.
pub message_id_retention: Duration,
/// How often the internal caches will be checked for expired items.
pub cache_evict_interval: Duration,
}
impl Default for Config {
/// Sensible defaults for the plumtree configuration
//
// TODO: Find out what good defaults are for the three timeouts here. Current numbers are
// guesses that need validation. The paper does not have concrete recommendations for these
// numbers.
fn default() -> Self {
Self {
// Paper: "The timeout value is a protocol parameter that should be configured considering
// the diameter of the overlay and a target maximum recovery latency, defined by the
// application requirements. This is a parameter that should be statically configured
// at deployment time." (p. 8)
//
// Earthstar has 5ms it seems, see https://github.com/earthstar-project/earthstar/blob/1523c640fedf106f598bf79b184fb0ada64b1cc0/src/syncer/plum_tree.ts#L75
// However in the paper it is more like a few roundtrips if I read things correctly.
graft_timeout_1: Duration::from_millis(80),
// Paper: "This second timeout value should be smaller that the first, in the order of an
// average round trip time to a neighbor." (p. 9)
//
// Earthstar doesn't have this step from my reading.
graft_timeout_2: Duration::from_millis(40),
// Again, paper does not tell a recommended number here. Likely should be quite small,
// as to not delay messages without need. This would also be the time frame in which
// `IHave`s are aggregated to save on packets.
//
// Eartstar dispatches immediately from my reading.
dispatch_timeout: Duration::from_millis(5),
// This number comes from experiment settings the plumtree paper (p. 12)
optimization_threshold: Round(7),
// This is a certainly-high-enough value for usual operation.
message_cache_retention: Duration::from_secs(30),
message_id_retention: Duration::from_secs(90),
cache_evict_interval: Duration::from_secs(1),
}
}
}
/// Stats about this topic's plumtree.
#[derive(Debug, Default, Clone)]
pub struct Stats {
/// Number of payload messages received so far.
///
/// See [`Message::Gossip`].
pub payload_messages_received: u64,
/// Number of control messages received so far.
///
/// See [`Message::Prune`], [`Message::Graft`], [`Message::IHave`].
pub control_messages_received: u64,
/// Max round seen so far.
pub max_last_delivery_hop: u16,
}
/// State of the plumtree.
#[derive(Debug)]
pub struct State<PI> {
/// Our address.
me: PI,
/// Configuration for this plumtree.
config: Config,
/// Set of peers used for payload exchange.
pub(crate) eager_push_peers: HashSet<PI>,
/// Set of peers used for control message exchange.
pub(crate) lazy_push_peers: HashSet<PI>,
lazy_push_queue: HashMap<PI, Vec<IHave>>,
/// Messages for which a [`MessageId`] has been seen via a [`Message::IHave`] but we have not
/// yet received the full payload. For each, we store the peers that have claimed to have this
/// message.
missing_messages: HashMap<MessageId, VecDeque<(PI, Round)>>,
/// Messages for which the full payload has been seen.
received_messages: TimeBoundCache<MessageId, ()>,
/// Payloads of received messages.
cache: TimeBoundCache<MessageId, Gossip>,
/// Message ids for which a [`Timer::SendGraft`] has been scheduled.
graft_timer_scheduled: HashSet<MessageId>,
/// Whether a [`Timer::DispatchLazyPush`] has been scheduled.
dispatch_timer_scheduled: bool,
/// Set to false after the first message is received. Used for initial timer scheduling.
init: bool,
/// [`Stats`] of this plumtree.
pub(crate) stats: Stats,
}
impl<PI: PeerIdentity> State<PI> {
/// Initialize the [`State`] of a plumtree.
pub fn new(me: PI, config: Config) -> Self {
Self {
me,
eager_push_peers: Default::default(),
lazy_push_peers: Default::default(),
lazy_push_queue: Default::default(),
config,
missing_messages: Default::default(),
received_messages: Default::default(),
graft_timer_scheduled: Default::default(),
dispatch_timer_scheduled: false,
cache: Default::default(),
init: false,
stats: Default::default(),
}
}
/// Handle an [`InEvent`].
pub fn handle(&mut self, event: InEvent<PI>, now: Instant, io: &mut impl IO<PI>) {
if !self.init {
self.init = true;
self.on_evict_cache_timer(now, io)
}
match event {
InEvent::RecvMessage(from, message) => self.handle_message(from, message, now, io),
InEvent::Broadcast(data, scope) => self.broadcast(data, scope, now, io),
InEvent::NeighborUp(peer) => self.on_neighbor_up(peer),
InEvent::NeighborDown(peer) => self.on_neighbor_down(peer),
InEvent::TimerExpired(timer) => match timer {
Timer::DispatchLazyPush => self.on_dispatch_timer(io),
Timer::SendGraft(id) => {
self.on_send_graft_timer(id, io);
}
Timer::EvictCache => self.on_evict_cache_timer(now, io),
},
}
}
/// Get access to the [`Stats`] of the plumtree.
pub fn stats(&self) -> &Stats {
&self.stats
}
/// Handle receiving a [`Message`].
fn handle_message(&mut self, sender: PI, message: Message, now: Instant, io: &mut impl IO<PI>) {
if matches!(message, Message::Gossip(_)) {
self.stats.payload_messages_received += 1;
} else {
self.stats.control_messages_received += 1;
}
match message {
Message::Gossip(details) => self.on_gossip(sender, details, now, io),
Message::Prune => self.on_prune(sender),
Message::IHave(details) => self.on_ihave(sender, details, io),
Message::Graft(details) => self.on_graft(sender, details, io),
}
}
/// Dispatches messages from lazy queue over to lazy peers.
fn on_dispatch_timer(&mut self, io: &mut impl IO<PI>) {
for (peer, list) in self.lazy_push_queue.drain() {
io.push(OutEvent::SendMessage(peer, Message::IHave(list)));
}
self.dispatch_timer_scheduled = false;
}
/// Send a gossip message.
///
/// Will be pushed in full to eager peers.
/// Pushing the message id to the lazy peers is delayed by a timer.
fn broadcast(&mut self, content: Bytes, scope: Scope, now: Instant, io: &mut impl IO<PI>) {
let id = MessageId::from_content(&content);
let scope = match scope {
Scope::Neighbors => DeliveryScope::Neighbors,
Scope::Swarm => DeliveryScope::Swarm(Round(0)),
};
let message = Gossip { id, content, scope };
let me = self.me;
if let DeliveryScope::Swarm(_) = scope {
self.received_messages
.insert(id, (), now + self.config.message_id_retention);
self.cache.insert(
id,
message.clone(),
now + self.config.message_cache_retention,
);
self.lazy_push(message.clone(), &me, io);
}
self.eager_push(message.clone(), &me, io);
}
/// Handle receiving a [`Message::Gossip`].
fn on_gossip(&mut self, sender: PI, message: Gossip, now: Instant, io: &mut impl IO<PI>) {
// Validate that the message id is the blake3 hash of the message content.
if !message.validate() {
// TODO: Do we want to take any measures against the sender if we received a message
// with a spoofed message id?
warn!(
peer = ?sender,
"Received a message with spoofed message id ({})", message.id
);
return;
}
// if we already received this message: move peer to lazy set
// and notify peer about this.
if self.received_messages.contains_key(&message.id) {
self.add_lazy(sender);
io.push(OutEvent::SendMessage(sender, Message::Prune));
// otherwise store the message, emit to application and forward to peers
} else {
if let DeliveryScope::Swarm(prev_round) = message.scope {
// insert the message in the list of received messages
self.received_messages.insert(
message.id,
(),
now + self.config.message_id_retention,
);
// increase the round for forwarding the message, and add to cache
// to reply to Graft messages later
// TODO: add callback/event to application to get missing messages that were received before?
let message = message.next_round().expect("just checked");
self.cache.insert(
message.id,
message.clone(),
now + self.config.message_cache_retention,
);
// push the message to our peers
self.eager_push(message.clone(), &sender, io);
self.lazy_push(message.clone(), &sender, io);
// cleanup places where we track missing messages
self.graft_timer_scheduled.remove(&message.id);
let previous_ihaves = self.missing_messages.remove(&message.id);
// do the optimization step from the paper
if let Some(previous_ihaves) = previous_ihaves {
self.optimize_tree(&sender, &message, previous_ihaves, io);
}
self.stats.max_last_delivery_hop =
self.stats.max_last_delivery_hop.max(prev_round.0);
}
// emit event to application
io.push(OutEvent::EmitEvent(Event::Received(
GossipEvent::from_message(&message, sender),
)));
}
}
/// Optimize the tree by pruning the `sender` of a [`Message::Gossip`] if we previously
/// received a [`Message::IHave`] for the same message with a much lower number of delivery
/// hops from the original broadcaster of the message.
///
/// See [Config::optimization_threshold].
fn optimize_tree(
&mut self,
gossip_sender: &PI,
message: &Gossip,
previous_ihaves: VecDeque<(PI, Round)>,
io: &mut impl IO<PI>,
) {
let round = message.round().expect("only called for swarm messages");
let best_ihave = previous_ihaves
.iter()
.min_by(|(_a_peer, a_round), (_b_peer, b_round)| a_round.cmp(b_round))
.copied();
if let Some((ihave_peer, ihave_round)) = best_ihave {
if (ihave_round < round) && (round - ihave_round) >= self.config.optimization_threshold
{
// Graft the sender of the IHave, but only if it's not already eager.
if !self.eager_push_peers.contains(&ihave_peer) {
let message = Message::Graft(Graft {
id: None,
round: ihave_round,
});
io.push(OutEvent::SendMessage(ihave_peer, message));
}
// Prune the sender of the Gossip.
io.push(OutEvent::SendMessage(*gossip_sender, Message::Prune));
}
}
}
/// Handle receiving a [`Message::Prune`].
fn on_prune(&mut self, sender: PI) {
self.add_lazy(sender);
}
/// Handle receiving a [`Message::IHave`].
///
/// > When a node receives a IHAVE message, it simply marks the corresponding message as
/// > missing It then starts a timer, with a predefined timeout value, and waits for the missing
/// > message to be received via eager push before the timer expires. The timeout value is a
/// > protocol parameter that should be configured considering the diameter of the overlay and a
/// > target maximum recovery latency, defined by the application requirements. This is a
/// > parameter that should be statically configured at deployment time. (p8)
fn on_ihave(&mut self, sender: PI, ihaves: Vec<IHave>, io: &mut impl IO<PI>) {
for ihave in ihaves {
if !self.received_messages.contains_key(&ihave.id) {
self.missing_messages
.entry(ihave.id)
.or_default()
.push_back((sender, ihave.round));
if !self.graft_timer_scheduled.contains(&ihave.id) {
self.graft_timer_scheduled.insert(ihave.id);
io.push(OutEvent::ScheduleTimer(
self.config.graft_timeout_1,
Timer::SendGraft(ihave.id),
));
}
}
}
}
/// A scheduled [`Timer::SendGraft`] has reached it's deadline.
fn on_send_graft_timer(&mut self, id: MessageId, io: &mut impl IO<PI>) {
// if the message was received before the timer ran out, there is no need to request it
// again
if self.received_messages.contains_key(&id) {
return;
}
// get the first peer that advertised this message
let entry = self
.missing_messages
.get_mut(&id)
.and_then(|entries| entries.pop_front());
if let Some((peer, round)) = entry {
self.add_eager(peer);
let message = Message::Graft(Graft {
id: Some(id),
round,
});
io.push(OutEvent::SendMessage(peer, message));
// "when a GRAFT message is sent, another timer is started to expire after a certain timeout,
// to ensure that the message will be requested to another neighbor if it is not received
// meanwhile. This second timeout value should be smaller that the first, in the order of
// an average round trip time to a neighbor." (p9)
io.push(OutEvent::ScheduleTimer(
self.config.graft_timeout_2,
Timer::SendGraft(id),
));
}
}
/// Handle receiving a [`Message::Graft`].
fn on_graft(&mut self, sender: PI, details: Graft, io: &mut impl IO<PI>) {
self.add_eager(sender);
if let Some(id) = details.id {
if let Some(message) = self.cache.get(&id) {
io.push(OutEvent::SendMessage(
sender,
Message::Gossip(message.clone()),
));
}
}
}
/// Handle a [`InEvent::NeighborUp`] when a peer joins the topic.
fn on_neighbor_up(&mut self, peer: PI) {
self.add_eager(peer);
}
/// Handle a [`InEvent::NeighborDown`] when a peer leaves the topic.
/// > When a neighbor is detected to leave the overlay, it is simple removed from the
/// > membership. Furthermore, the record of IHAVE messages sent from failed members is deleted
/// > from the missing history. (p9)
fn on_neighbor_down(&mut self, peer: PI) {
self.missing_messages.retain(|_message_id, ihaves| {
ihaves.retain(|(ihave_peer, _round)| *ihave_peer != peer);
!ihaves.is_empty()
});
self.eager_push_peers.remove(&peer);
self.lazy_push_peers.remove(&peer);
}
fn on_evict_cache_timer(&mut self, now: Instant, io: &mut impl IO<PI>) {
self.cache.expire_until(now);
io.push(OutEvent::ScheduleTimer(
self.config.cache_evict_interval,
Timer::EvictCache,
));
}
/// Moves peer into eager set.
fn add_eager(&mut self, peer: PI) {
self.lazy_push_peers.remove(&peer);
self.eager_push_peers.insert(peer);
}
/// Moves peer into lazy set.
fn add_lazy(&mut self, peer: PI) {
self.eager_push_peers.remove(&peer);
self.lazy_push_peers.insert(peer);
}
/// Immediately sends message to eager peers.
fn eager_push(&mut self, gossip: Gossip, sender: &PI, io: &mut impl IO<PI>) {
for peer in self
.eager_push_peers
.iter()
.filter(|peer| **peer != self.me && *peer != sender)
{
io.push(OutEvent::SendMessage(
*peer,
Message::Gossip(gossip.clone()),
));
}
}
/// Queue lazy message announcements into the queue that will be sent out as batched
/// [`Message::IHave`] messages once the [`Timer::DispatchLazyPush`] timer is triggered.
fn lazy_push(&mut self, gossip: Gossip, sender: &PI, io: &mut impl IO<PI>) {
let Some(round) = gossip.round() else {
return;
};
for peer in self.lazy_push_peers.iter().filter(|x| *x != sender) {
self.lazy_push_queue.entry(*peer).or_default().push(IHave {
id: gossip.id,
round,
});
}
if !self.dispatch_timer_scheduled {
io.push(OutEvent::ScheduleTimer(
self.config.dispatch_timeout,
Timer::DispatchLazyPush,
));
self.dispatch_timer_scheduled = true;
}
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn optimize_tree() {
let mut io = VecDeque::new();
let config: Config = Default::default();
let mut state = State::new(1, config.clone());
let now = Instant::now();
// we receive an IHave message from peer 2
// it has `round: 2` which means that the the peer that sent us the IHave was
// two hops away from the original sender of the message
let content: Bytes = b"hi".to_vec().into();
let id = MessageId::from_content(&content);
let event = InEvent::RecvMessage(
2u32,
Message::IHave(vec![IHave {
id,
round: Round(2),
}]),
);
state.handle(event, now, &mut io);
io.clear();
// we then receive a `Gossip` message with the same `MessageId` from peer 3
// the message has `round: 6`, which means it travelled 6 hops until it reached us
// this is less hops than to peer 2, but not enough to trigger the optimization
// because we use the default config which has `optimization_threshold: 7`
let event = InEvent::RecvMessage(
3,
Message::Gossip(Gossip {
id,
content: content.clone(),
scope: DeliveryScope::Swarm(Round(6)),
}),
);
state.handle(event, now, &mut io);
let expected = {
// we expect a dispatch timer schedule and receive event, but no Graft or Prune
// messages
let mut io = VecDeque::new();
io.push(OutEvent::ScheduleTimer(
config.dispatch_timeout,
Timer::DispatchLazyPush,
));
io.push(OutEvent::EmitEvent(Event::Received(GossipEvent {
content,
delivered_from: 3,
scope: DeliveryScope::Swarm(Round(6)),
})));
io
};
assert_eq!(io, expected);
io.clear();
// now we run the same flow again but this time peer 3 is 9 hops away from the message's
// sender. message's sender. this will trigger the optimization:
// peer 2 will be promoted to eager and peer 4 demoted to lazy
let content: Bytes = b"hi2".to_vec().into();
let id = MessageId::from_content(&content);
let event = InEvent::RecvMessage(
2u32,
Message::IHave(vec![IHave {
id,
round: Round(2),
}]),
);
state.handle(event, now, &mut io);
io.clear();
let event = InEvent::RecvMessage(
3,
Message::Gossip(Gossip {
id,
content: content.clone(),
scope: DeliveryScope::Swarm(Round(9)),
}),
);
state.handle(event, now, &mut io);
let expected = {
// this time we expect the Graft and Prune messages to be sent, performing the
// optimization step
let mut io = VecDeque::new();
io.push(OutEvent::SendMessage(
2,
Message::Graft(Graft {
id: None,
round: Round(2),
}),
));
io.push(OutEvent::SendMessage(3, Message::Prune));
io.push(OutEvent::EmitEvent(Event::Received(GossipEvent {
content,
delivered_from: 3,
scope: DeliveryScope::Swarm(Round(9)),
})));
io
};
assert_eq!(io, expected);
}
#[test]
fn spoofed_messages_are_ignored() {
let config: Config = Default::default();
let mut state = State::new(1, config.clone());
let now = Instant::now();
// we recv a correct gossip message and expect the Received event to be emitted
let content: Bytes = b"hello1".to_vec().into();
let message = Message::Gossip(Gossip {
content: content.clone(),
id: MessageId::from_content(&content),
scope: DeliveryScope::Swarm(Round(1)),
});
let mut io = VecDeque::new();
state.handle(InEvent::RecvMessage(2, message), now, &mut io);
let expected = {
let mut io = VecDeque::new();
io.push(OutEvent::ScheduleTimer(
config.cache_evict_interval,
Timer::EvictCache,
));
io.push(OutEvent::ScheduleTimer(
config.dispatch_timeout,
Timer::DispatchLazyPush,
));
io.push(OutEvent::EmitEvent(Event::Received(GossipEvent {
content,
delivered_from: 2,
scope: DeliveryScope::Swarm(Round(1)),
})));
io
};
assert_eq!(io, expected);
// now we recv with a spoofed id and expect no event to be emitted
let content: Bytes = b"hello2".to_vec().into();
let message = Message::Gossip(Gossip {
content,
id: MessageId::from_content(b"foo"),
scope: DeliveryScope::Swarm(Round(1)),
});
let mut io = VecDeque::new();
state.handle(InEvent::RecvMessage(2, message), now, &mut io);
let expected = VecDeque::new();
assert_eq!(io, expected);
}
#[test]
fn cache_is_evicted() {
let config: Config = Default::default();
let mut state = State::new(1, config.clone());
let now = Instant::now();
let content: Bytes = b"hello1".to_vec().into();
let message = Message::Gossip(Gossip {
content: content.clone(),
id: MessageId::from_content(&content),
scope: DeliveryScope::Swarm(Round(1)),
});
let mut io = VecDeque::new();
state.handle(InEvent::RecvMessage(2, message), now, &mut io);
assert_eq!(state.cache.len(), 1);
let now = now + Duration::from_secs(1);
state.handle(InEvent::TimerExpired(Timer::EvictCache), now, &mut io);
assert_eq!(state.cache.len(), 1);
let now = now + config.message_cache_retention;
state.handle(InEvent::TimerExpired(Timer::EvictCache), now, &mut io);
assert_eq!(state.cache.len(), 0);
}
}