iroh_gossip/proto/
state.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
//! The protocol state of the `iroh-gossip` protocol.

use std::collections::{hash_map, HashMap, HashSet};

use iroh_metrics::{inc, inc_by};
use n0_future::time::{Duration, Instant};
use rand::Rng;
use serde::{Deserialize, Serialize};
use tracing::trace;

use crate::{
    metrics::Metrics,
    proto::{
        topic::{self, Command},
        util::idbytes_impls,
        Config, PeerData, PeerIdentity,
    },
};

/// The identifier for a topic
#[derive(Clone, Copy, Eq, PartialEq, Hash, Serialize, Ord, PartialOrd, Deserialize)]
pub struct TopicId([u8; 32]);
idbytes_impls!(TopicId, "TopicId");

/// Protocol wire message
///
/// This is the wire frame of the `iroh-gossip` protocol.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct Message<PI> {
    topic: TopicId,
    message: topic::Message<PI>,
}

impl<PI> Message<PI> {
    /// Get the kind of this message
    pub fn kind(&self) -> MessageKind {
        self.message.kind()
    }
}

/// Whether this is a control or data message
#[derive(Debug)]
pub enum MessageKind {
    /// A data message.
    Data,
    /// A control message.
    Control,
}

impl<PI: Serialize> Message<PI> {
    /// Get the encoded size of this message
    pub fn size(&self) -> postcard::Result<usize> {
        postcard::experimental::serialized_size(&self)
    }
}

/// A timer to be registered into the runtime
///
/// As the implementation of the protocol is an IO-less state machine, registering timers does not
/// happen within the protocol implementation. Instead, these `Timer` structs are emitted as
/// [`OutEvent`]s. The implementer must register the timer in its runtime to be emitted on the specified [`Instant`],
/// and once triggered inject an [`InEvent::TimerExpired`] into the protocol state.
#[derive(Clone, Debug)]
pub struct Timer<PI> {
    topic: TopicId,
    timer: topic::Timer<PI>,
}

/// Input event to the protocol state.
#[derive(Clone, Debug)]
pub enum InEvent<PI> {
    /// Message received from the network.
    RecvMessage(PI, Message<PI>),
    /// Execute a command from the application.
    Command(TopicId, Command<PI>),
    /// Trigger a previously scheduled timer.
    TimerExpired(Timer<PI>),
    /// Peer disconnected on the network level.
    PeerDisconnected(PI),
    /// Update the opaque peer data about yourself.
    UpdatePeerData(PeerData),
}

/// Output event from the protocol state.
#[derive(Debug, Clone)]
pub enum OutEvent<PI> {
    /// Send a message on the network
    SendMessage(PI, Message<PI>),
    /// Emit an event to the application.
    EmitEvent(TopicId, topic::Event<PI>),
    /// Schedule a timer. The runtime is responsible for sending an [InEvent::TimerExpired]
    /// after the duration.
    ScheduleTimer(Duration, Timer<PI>),
    /// Close the connection to a peer on the network level.
    DisconnectPeer(PI),
    /// Updated peer data
    PeerData(PI, PeerData),
}

type ConnsMap<PI> = HashMap<PI, HashSet<TopicId>>;
type Outbox<PI> = Vec<OutEvent<PI>>;

enum InEventMapped<PI> {
    All(topic::InEvent<PI>),
    TopicEvent(TopicId, topic::InEvent<PI>),
}

impl<PI> From<InEvent<PI>> for InEventMapped<PI> {
    fn from(event: InEvent<PI>) -> InEventMapped<PI> {
        match event {
            InEvent::RecvMessage(from, Message { topic, message }) => {
                Self::TopicEvent(topic, topic::InEvent::RecvMessage(from, message))
            }
            InEvent::Command(topic, command) => {
                Self::TopicEvent(topic, topic::InEvent::Command(command))
            }
            InEvent::TimerExpired(Timer { topic, timer }) => {
                Self::TopicEvent(topic, topic::InEvent::TimerExpired(timer))
            }
            InEvent::PeerDisconnected(peer) => Self::All(topic::InEvent::PeerDisconnected(peer)),
            InEvent::UpdatePeerData(data) => Self::All(topic::InEvent::UpdatePeerData(data)),
        }
    }
}

/// The state of the `iroh-gossip` protocol.
///
/// The implementation works as an IO-less state machine. The implementer injects events through
/// [`Self::handle`], which returns an iterator of [`OutEvent`]s to be processed.
///
/// This struct contains a map of [`topic::State`] for each topic that was joined. It mostly acts as
/// a forwarder of [`InEvent`]s to matching topic state. Each topic's state is completely
/// independent; thus the actual protocol logic lives with [`topic::State`].
#[derive(Debug)]
pub struct State<PI, R> {
    me: PI,
    me_data: Option<PeerData>,
    config: Config,
    rng: R,
    states: HashMap<TopicId, topic::State<PI, R>>,
    outbox: Outbox<PI>,
    peer_topics: ConnsMap<PI>,
}

impl<PI: PeerIdentity, R: Rng + Clone> State<PI, R> {
    /// Create a new protocol state instance.
    ///
    /// `me` is the [`PeerIdentity`] of the local node, `peer_data` is the initial [`PeerData`]
    /// (which can be updated over time).
    /// For the protocol to perform as recommended in the papers, the [`Config`] should be
    /// identical for all nodes in the network.
    pub fn new(me: PI, me_data: Option<PeerData>, config: Config, rng: R) -> Self {
        Self {
            me,
            me_data,
            config,
            rng,
            states: Default::default(),
            outbox: Default::default(),
            peer_topics: Default::default(),
        }
    }

    /// Get a reference to the node's [`PeerIdentity`]
    pub fn me(&self) -> &PI {
        &self.me
    }

    /// Get a reference to the protocol state for a topic.
    pub fn state(&self, topic: &TopicId) -> Option<&topic::State<PI, R>> {
        self.states.get(topic)
    }

    /// Get a reference to the protocol state for a topic.
    #[cfg(test)]
    pub fn state_mut(&mut self, topic: &TopicId) -> Option<&mut topic::State<PI, R>> {
        self.states.get_mut(topic)
    }

    /// Get an iterator of all joined topics.
    pub fn topics(&self) -> impl Iterator<Item = &TopicId> {
        self.states.keys()
    }

    /// Get an iterator for the states of all joined topics.
    pub fn states(&self) -> impl Iterator<Item = (&TopicId, &topic::State<PI, R>)> {
        self.states.iter()
    }

    /// Check if a topic has any active (connected) peers.
    pub fn has_active_peers(&self, topic: &TopicId) -> bool {
        self.state(topic)
            .map(|s| s.has_active_peers())
            .unwrap_or(false)
    }

    /// Returns the maximum message size configured in the gossip protocol.
    pub fn max_message_size(&self) -> usize {
        self.config.max_message_size
    }

    /// Handle an [`InEvent`]
    ///
    /// This returns an iterator of [`OutEvent`]s that must be processed.
    pub fn handle(
        &mut self,
        event: InEvent<PI>,
        now: Instant,
    ) -> impl Iterator<Item = OutEvent<PI>> + '_ {
        trace!("in : {event:?}");
        track_in_event(&event);

        let event: InEventMapped<PI> = event.into();

        match event {
            InEventMapped::TopicEvent(topic, event) => {
                // when receiving a join command, initialize state if it doesn't exist
                if matches!(&event, topic::InEvent::Command(Command::Join(_peers))) {
                    if let hash_map::Entry::Vacant(e) = self.states.entry(topic) {
                        e.insert(topic::State::with_rng(
                            self.me,
                            self.me_data.clone(),
                            self.config.clone(),
                            self.rng.clone(),
                        ));
                    }
                }

                // when receiving a quit command, note this and drop the topic state after
                // processing this last event
                let quit = matches!(event, topic::InEvent::Command(Command::Quit));

                // pass the event to the state handler
                if let Some(state) = self.states.get_mut(&topic) {
                    // when receiving messages, update our conn map to take note that this topic state may want
                    // to keep this connection
                    if let topic::InEvent::RecvMessage(from, _message) = &event {
                        self.peer_topics.entry(*from).or_default().insert(topic);
                    }
                    let out = state.handle(event, now);
                    for event in out {
                        handle_out_event(topic, event, &mut self.peer_topics, &mut self.outbox);
                    }
                }

                if quit {
                    self.states.remove(&topic);
                }
            }
            // when a peer disconnected on the network level, forward event to all states
            InEventMapped::All(event) => {
                if let topic::InEvent::UpdatePeerData(data) = &event {
                    self.me_data = Some(data.clone());
                }
                for (topic, state) in self.states.iter_mut() {
                    let out = state.handle(event.clone(), now);
                    for event in out {
                        handle_out_event(*topic, event, &mut self.peer_topics, &mut self.outbox);
                    }
                }
            }
        }

        // track metrics
        track_out_events(&self.outbox);

        self.outbox.drain(..)
    }
}

fn handle_out_event<PI: PeerIdentity>(
    topic: TopicId,
    event: topic::OutEvent<PI>,
    conns: &mut ConnsMap<PI>,
    outbox: &mut Outbox<PI>,
) {
    trace!("out: {event:?}");
    match event {
        topic::OutEvent::SendMessage(to, message) => {
            outbox.push(OutEvent::SendMessage(to, Message { topic, message }))
        }
        topic::OutEvent::EmitEvent(event) => outbox.push(OutEvent::EmitEvent(topic, event)),
        topic::OutEvent::ScheduleTimer(delay, timer) => {
            outbox.push(OutEvent::ScheduleTimer(delay, Timer { topic, timer }))
        }
        topic::OutEvent::DisconnectPeer(peer) => {
            let empty = conns
                .get_mut(&peer)
                .map(|list| list.remove(&topic) && list.is_empty())
                .unwrap_or(false);
            if empty {
                conns.remove(&peer);
                outbox.push(OutEvent::DisconnectPeer(peer));
            }
        }
        topic::OutEvent::PeerData(peer, data) => outbox.push(OutEvent::PeerData(peer, data)),
    }
}

fn track_out_events<PI: Serialize>(events: &[OutEvent<PI>]) {
    for event in events {
        match event {
            OutEvent::SendMessage(_to, message) => match message.kind() {
                MessageKind::Data => {
                    inc!(Metrics, msgs_data_sent);
                    inc_by!(
                        Metrics,
                        msgs_data_sent_size,
                        message.size().unwrap_or(0) as u64
                    );
                }
                MessageKind::Control => {
                    inc!(Metrics, msgs_ctrl_sent);
                    inc_by!(
                        Metrics,
                        msgs_ctrl_sent_size,
                        message.size().unwrap_or(0) as u64
                    );
                }
            },
            OutEvent::EmitEvent(_topic, event) => match event {
                super::Event::NeighborUp(_peer) => inc!(Metrics, neighbor_up),
                super::Event::NeighborDown(_peer) => inc!(Metrics, neighbor_down),
                _ => {}
            },
            _ => {}
        }
    }
}

fn track_in_event<PI: Serialize>(event: &InEvent<PI>) {
    if let InEvent::RecvMessage(_from, message) = event {
        match message.kind() {
            MessageKind::Data => {
                inc!(Metrics, msgs_data_recv);
                inc_by!(
                    Metrics,
                    msgs_data_recv_size,
                    message.size().unwrap_or(0) as u64
                );
            }
            MessageKind::Control => {
                inc!(Metrics, msgs_ctrl_recv);
                inc_by!(
                    Metrics,
                    msgs_ctrl_recv_size,
                    message.size().unwrap_or(0) as u64
                );
            }
        }
    }
}