1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
//! Actor to run hairpinning check.
//!
//! This actor works as follows:
//!
//! - After starting prepares the haircheck:
//! - binds socket
//! - sends traffic from it's socket to trick some routers
//! - When requested performs the hairpin probe.
//! - result is sent to net_report actor addr.
//! - Shuts down
//!
//! Note it will only perform a single hairpin check before shutting down. Any further
//! requests to it will fail which is intentional.
use std::net::{Ipv4Addr, SocketAddr, SocketAddrV4};
use anyhow::{bail, Context, Result};
use iroh_relay::protos::stun;
use netwatch::UdpSocket;
use tokio::{sync::oneshot, time::Instant};
use tokio_util::task::AbortOnDropHandle;
use tracing::{debug, error, info_span, trace, warn, Instrument};
use crate::{self as net_report, defaults::timeouts::HAIRPIN_CHECK_TIMEOUT, reportgen, Inflight};
/// Handle to the hairpin actor.
///
/// Dropping it will abort the actor.
#[derive(Debug)]
pub(super) struct Client {
addr: Option<oneshot::Sender<Message>>,
_drop_guard: AbortOnDropHandle<()>,
}
impl Client {
pub(super) fn new(net_report: net_report::Addr, reportgen: reportgen::Addr) -> Self {
let (addr, msg_rx) = oneshot::channel();
let actor = Actor {
msg_rx,
net_report,
reportgen,
};
let task =
tokio::spawn(async move { actor.run().await }.instrument(info_span!("hairpin.actor")));
Self {
addr: Some(addr),
_drop_guard: AbortOnDropHandle::new(task),
}
}
/// Returns `true` if we have started a hairpin check before.
pub(super) fn has_started(&self) -> bool {
self.addr.is_none()
}
/// Starts the hairpin check.
///
/// *dst* should be our own address as discovered by STUN. Hairpin detection works by
/// sending a new STUN request to our own public address, if we receive this request
/// back then hairpinning works, otherwise it does not.
///
/// Will do nothing if this actor is already finished or a check has already started.
pub(super) fn start_check(&mut self, dst: SocketAddrV4) {
if let Some(addr) = self.addr.take() {
addr.send(Message::StartCheck(dst)).ok();
}
}
}
#[derive(Debug)]
enum Message {
/// Performs the hairpin check.
///
/// The STUN request will be sent to the provided [`SocketAddrV4`] which should be our
/// own address discovered using STUN.
StartCheck(SocketAddrV4),
}
#[derive(Debug)]
struct Actor {
msg_rx: oneshot::Receiver<Message>,
net_report: net_report::Addr,
reportgen: reportgen::Addr,
}
impl Actor {
async fn run(self) {
match self.run_inner().await {
Ok(_) => trace!("hairpin actor finished successfully"),
Err(err) => error!("Hairpin actor failed: {err:#}"),
}
}
async fn run_inner(self) -> Result<()> {
let socket = UdpSocket::bind_v4(0).context("Failed to bind hairpin socket on 0.0.0.0:0")?;
if let Err(err) = Self::prepare_hairpin(&socket).await {
warn!("unable to send hairpin prep: {err:#}");
// Continue anyway, most routers are fine.
}
// We only have one message to handle
let Ok(Message::StartCheck(dst)) = self.msg_rx.await else {
return Ok(());
};
let txn = stun::TransactionId::default();
trace!(%txn, "Sending hairpin with transaction ID");
let (stun_tx, stun_rx) = oneshot::channel();
let inflight = Inflight {
txn,
start: Instant::now(), // ignored by hairping probe
s: stun_tx,
};
let (msg_response_tx, msg_response_rx) = oneshot::channel();
self.net_report
.send(net_report::Message::InFlightStun(inflight, msg_response_tx))
.await
.context("net_report actor gone")?;
msg_response_rx.await.context("net_report actor died")?;
if let Err(err) = socket.send_to(&stun::request(txn), dst.into()).await {
warn!(%dst, "failed to send hairpin check");
return Err(err.into());
}
let now = Instant::now();
let hairpinning_works = match tokio::time::timeout(HAIRPIN_CHECK_TIMEOUT, stun_rx).await {
Ok(Ok(_)) => true,
Ok(Err(_)) => bail!("net_report actor dropped stun response channel"),
Err(_) => false, // Elapsed
};
debug!(
"hairpinning done in {:?}, res: {:?}",
now.elapsed(),
hairpinning_works
);
self.reportgen
.send(super::Message::HairpinResult(hairpinning_works))
.await
.context("Failed to send hairpin result to reportgen actor")?;
trace!("reportgen notified");
Ok(())
}
async fn prepare_hairpin(socket: &UdpSocket) -> Result<()> {
// At least the Apple Airport Extreme doesn't allow hairpin
// sends from a private socket until it's seen traffic from
// that src IP:port to something else out on the internet.
//
// See https://github.com/tailscale/tailscale/issues/188#issuecomment-600728643
//
// And it seems that even sending to a likely-filtered RFC 5737
// documentation-only IPv4 range is enough to set up the mapping.
// So do that for now. In the future we might want to classify networks
// that do and don't require this separately. But for now help it.
let documentation_ip = SocketAddr::from((Ipv4Addr::new(203, 0, 113, 1), 12345));
socket
.send_to(
b"net_report; see https://github.com/tailscale/tailscale/issues/188",
documentation_ip,
)
.await?;
Ok(())
}
}
#[cfg(test)]
mod tests {
use std::time::Duration;
use bytes::BytesMut;
use tokio::sync::mpsc;
use tracing::info;
use super::*;
#[tokio::test]
async fn test_hairpin_success() {
for i in 0..100 {
let now = Instant::now();
test_hairpin(true).await;
println!("done round {} in {:?}", i + 1, now.elapsed());
}
}
#[tokio::test]
async fn test_hairpin_failure() {
test_hairpin(false).await;
}
async fn test_hairpin(hairpinning_works: bool) {
let _guard = iroh_test::logging::setup();
// Setup fake net_report and reportstate actors, hairpinning interacts with them.
let (net_report_tx, mut net_report_rx) = mpsc::channel(32);
let net_report_addr = net_report::Addr {
sender: net_report_tx,
};
let (reportstate_tx, mut reportstate_rx) = mpsc::channel(32);
let reportstate_addr = reportgen::Addr {
sender: reportstate_tx,
};
// Create hairpin actor
let mut actor = Client::new(net_report_addr, reportstate_addr);
// Hairpinning works by asking the hairpin actor to send a STUN request to our
// discovered public address. If the router returns it hairpinning works. We
// emulate this by binding a random socket which we pretend is our publicly
// discovered address. The hairpin actor will send it a request and we return it
// via the inflight channel.
let public_sock = UdpSocket::bind_local_v4(0).unwrap();
let ipp_v4 = match public_sock.local_addr().unwrap() {
SocketAddr::V4(ipp) => ipp,
SocketAddr::V6(_) => unreachable!(),
};
actor.start_check(ipp_v4);
// This bit is our dummy net_report actor: it handles the inflight request and sends
// back the STUN request once it arrives.
let dummy_net_report = tokio::spawn(
async move {
let net_report::Message::InFlightStun(inflight, resp_tx) =
net_report_rx.recv().await.unwrap()
else {
panic!("Wrong message received");
};
resp_tx.send(()).unwrap();
let mut buf = BytesMut::zeroed(64 << 10);
let (count, addr) = public_sock.recv_from(&mut buf).await.unwrap();
info!(
addr=?public_sock.local_addr().unwrap(),
%count,
"Forwarding payload to hairpin actor",
);
let payload = buf.split_to(count).freeze();
let txn = stun::parse_binding_request(&payload).unwrap();
assert_eq!(txn, inflight.txn);
if hairpinning_works {
// We want hairpinning to work, send back the STUN request.
inflight.s.send((Duration::new(0, 1), addr)).unwrap();
} else {
// We want hairpinning to fail, just wait but do not drop the STUN response
// channel because that would make the hairpin actor detect an error.
info!("Received hairpin request, not sending response");
tokio::time::sleep(HAIRPIN_CHECK_TIMEOUT * 8).await;
}
}
.instrument(info_span!("dummy-net_report")),
);
// Next we expect our dummy reportstate to receive the result.
match reportstate_rx.recv().await {
Some(reportgen::Message::HairpinResult(val)) => assert_eq!(val, hairpinning_works),
Some(msg) => panic!("Unexpected reportstate message: {msg:?}"),
None => panic!("reportstate mpsc has no senders"),
}
// Cleanup: our dummy net_report actor should finish
dummy_net_report
.await
.expect("error in dummy net_report actor");
}
#[tokio::test]
async fn test_client_drop() {
let _guard = iroh_test::logging::setup();
// Setup fake net_report and reportstate actors, hairpinning interacts with them.
let (net_report_tx, _net_report_rx) = mpsc::channel(32);
let net_report_addr = net_report::Addr {
sender: net_report_tx,
};
let (reportstate_tx, _reportstate_rx) = mpsc::channel(32);
let reportstate_addr = reportgen::Addr {
sender: reportstate_tx,
};
// Create hairpin actor
let mut client = Client::new(net_report_addr, reportstate_addr);
// Save the addr, drop the client
let addr = client.addr.take();
drop(client);
tokio::task::yield_now().await;
// Check the actor is gone
let ipp_v4 = SocketAddrV4::new(Ipv4Addr::LOCALHOST, 10);
match addr.unwrap().send(Message::StartCheck(ipp_v4)) {
Err(_) => (),
_ => panic!("actor still running"),
}
}
}