iroh_base/
key.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
//! Cryptographic key handling for `iroh`.

use std::{
    borrow::Borrow,
    cmp::{Ord, PartialOrd},
    fmt::{Debug, Display},
    hash::Hash,
    str::FromStr,
};

use curve25519_dalek::edwards::CompressedEdwardsY;
pub use ed25519_dalek::Signature;
use ed25519_dalek::{SignatureError, SigningKey, VerifyingKey};
use rand_core::CryptoRngCore;
use serde::{Deserialize, Serialize};

/// A public key.
///
/// The key itself is stored as the `CompressedEdwards` y coordinate of the public key
/// It is verified to decompress into a valid key when created.
#[derive(Clone, Copy, PartialEq, Eq)]
#[repr(transparent)]
pub struct PublicKey(CompressedEdwardsY);

impl Borrow<[u8; 32]> for PublicKey {
    fn borrow(&self) -> &[u8; 32] {
        self.as_bytes()
    }
}

impl PartialOrd for PublicKey {
    fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
        Some(self.cmp(other))
    }
}

impl Ord for PublicKey {
    fn cmp(&self, other: &Self) -> std::cmp::Ordering {
        self.0.as_bytes().cmp(other.0.as_bytes())
    }
}

/// The identifier for a node in the (iroh) network.
///
/// Each node in iroh has a unique identifier created as a cryptographic key.  This can be
/// used to globally identify a node.  Since it is also a cryptographic key it is also the
/// mechanism by which all traffic is always encrypted for a specific node only.
///
/// This is equivalent to [`PublicKey`].  By convention we will (or should) use `PublicKey`
/// as type name when performing cryptographic operations, but use `NodeId` when referencing
/// a node.  E.g.:
///
/// - `encrypt(key: PublicKey)`
/// - `send_to(node: NodeId)`
pub type NodeId = PublicKey;

impl Hash for PublicKey {
    fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
        self.0.hash(state);
    }
}

impl Serialize for PublicKey {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: serde::Serializer,
    {
        if serializer.is_human_readable() {
            serializer.serialize_str(&self.to_string())
        } else {
            self.0.as_bytes().serialize(serializer)
        }
    }
}

impl<'de> Deserialize<'de> for PublicKey {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: serde::Deserializer<'de>,
    {
        if deserializer.is_human_readable() {
            let s = String::deserialize(deserializer)?;
            Self::from_str(&s).map_err(serde::de::Error::custom)
        } else {
            let data: [u8; 32] = serde::Deserialize::deserialize(deserializer)?;
            Self::try_from(data.as_ref()).map_err(serde::de::Error::custom)
        }
    }
}

impl PublicKey {
    /// Get this public key as a byte array.
    pub fn as_bytes(&self) -> &[u8; 32] {
        self.0.as_bytes()
    }

    /// Returns the [`VerifyingKey`] for this `PublicKey`.
    pub fn public(&self) -> VerifyingKey {
        VerifyingKey::from_bytes(self.0.as_bytes()).expect("already verified")
    }

    /// Construct a `PublicKey` from a slice of bytes.
    ///
    /// # Warning
    ///
    /// This will return a [`SignatureError`] if the bytes passed into this method do not represent
    /// a valid `ed25519_dalek` curve point. Will never fail for bytes return from [`Self::as_bytes`].
    /// See [`VerifyingKey::from_bytes`] for details.
    pub fn from_bytes(bytes: &[u8; 32]) -> Result<Self, SignatureError> {
        let key = VerifyingKey::from_bytes(bytes)?;
        let y = CompressedEdwardsY(key.to_bytes());
        Ok(Self(y))
    }

    /// Verify a signature on a message with this secret key's public key.
    ///
    /// # Return
    ///
    /// Returns `Ok(())` if the signature is valid, and `Err` otherwise.
    pub fn verify(&self, message: &[u8], signature: &Signature) -> Result<(), SignatureError> {
        self.public().verify_strict(message, signature)
    }

    /// Convert to a hex string limited to the first 5 bytes for a friendly string
    /// representation of the key.
    pub fn fmt_short(&self) -> String {
        data_encoding::HEXLOWER.encode(&self.as_bytes()[..5])
    }

    /// The length of an ed25519 `PublicKey`, in bytes.
    pub const LENGTH: usize = ed25519_dalek::PUBLIC_KEY_LENGTH;
}

impl TryFrom<&[u8]> for PublicKey {
    type Error = SignatureError;

    #[inline]
    fn try_from(bytes: &[u8]) -> Result<Self, Self::Error> {
        let vk = VerifyingKey::try_from(bytes)?;
        Ok(Self(CompressedEdwardsY(vk.to_bytes())))
    }
}

impl TryFrom<&[u8; 32]> for PublicKey {
    type Error = SignatureError;

    #[inline]
    fn try_from(bytes: &[u8; 32]) -> Result<Self, Self::Error> {
        Self::from_bytes(bytes)
    }
}

impl AsRef<[u8]> for PublicKey {
    fn as_ref(&self) -> &[u8] {
        self.as_bytes()
    }
}

impl From<VerifyingKey> for PublicKey {
    fn from(verifying_key: VerifyingKey) -> Self {
        let key = verifying_key.to_bytes();
        PublicKey(CompressedEdwardsY(key))
    }
}

impl Debug for PublicKey {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(
            f,
            "PublicKey({})",
            data_encoding::HEXLOWER.encode(self.as_bytes())
        )
    }
}

impl Display for PublicKey {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "{}", data_encoding::HEXLOWER.encode(self.as_bytes()))
    }
}

/// Error when deserialising a [`PublicKey`] or a [`SecretKey`].
#[derive(thiserror::Error, Debug)]
pub enum KeyParsingError {
    /// Error when decoding.
    #[error("decoding: {0}")]
    Decode(#[from] data_encoding::DecodeError),
    /// Error when decoding the public key.
    #[error("key: {0}")]
    Key(#[from] ed25519_dalek::SignatureError),
    /// The encoded information had the wrong length.
    #[error("invalid length")]
    DecodeInvalidLength,
}

/// Deserialises the [`PublicKey`] from it's base32 encoding.
///
/// [`Display`] is capable of serialising this format.
impl FromStr for PublicKey {
    type Err = KeyParsingError;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        let bytes = decode_base32_hex(s)?;

        Ok(Self::from_bytes(&bytes)?)
    }
}

/// A secret key.
#[derive(Clone)]
pub struct SecretKey {
    secret: SigningKey,
}

impl Debug for SecretKey {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "SecretKey(..)")
    }
}

impl Display for SecretKey {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // TODO: revivew for security
        write!(
            f,
            "{}",
            data_encoding::HEXLOWER.encode(self.secret.as_bytes())
        )
    }
}

impl FromStr for SecretKey {
    type Err = KeyParsingError;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        let bytes = decode_base32_hex(s)?;
        Ok(SecretKey::from(bytes))
    }
}

impl Serialize for SecretKey {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: serde::Serializer,
    {
        self.secret.serialize(serializer)
    }
}

impl<'de> Deserialize<'de> for SecretKey {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: serde::Deserializer<'de>,
    {
        let secret = SigningKey::deserialize(deserializer)?;
        Ok(secret.into())
    }
}

impl SecretKey {
    /// The public key of this [`SecretKey`].
    pub fn public(&self) -> PublicKey {
        self.secret.verifying_key().into()
    }

    /// Generate a new [`SecretKey`] with a randomness generator.
    ///
    /// ```rust
    /// // use the OsRng option for OS depedndent most secure RNG.
    /// let mut rng = rand::rngs::OsRng;
    /// let _key = iroh_base::SecretKey::generate(&mut rng);
    /// ```
    pub fn generate<R: CryptoRngCore>(mut csprng: R) -> Self {
        let secret = SigningKey::generate(&mut csprng);

        Self { secret }
    }

    /// Sign the given message and return a digital signature
    pub fn sign(&self, msg: &[u8]) -> Signature {
        use ed25519_dalek::Signer;

        self.secret.sign(msg)
    }

    /// Convert this to the bytes representing the secret part.
    /// The public part can always be recovered.
    pub fn to_bytes(&self) -> [u8; 32] {
        self.secret.to_bytes()
    }

    /// Create a secret key from its byte representation.
    pub fn from_bytes(bytes: &[u8; 32]) -> Self {
        let secret = SigningKey::from_bytes(bytes);
        secret.into()
    }

    /// Returns the [`SigningKey`] for this `SecretKey`.
    pub fn secret(&self) -> &SigningKey {
        &self.secret
    }
}

impl From<SigningKey> for SecretKey {
    fn from(secret: SigningKey) -> Self {
        SecretKey { secret }
    }
}

impl From<[u8; 32]> for SecretKey {
    fn from(value: [u8; 32]) -> Self {
        Self::from_bytes(&value)
    }
}

impl TryFrom<&[u8]> for SecretKey {
    type Error = SignatureError;

    #[inline]
    fn try_from(bytes: &[u8]) -> Result<Self, Self::Error> {
        let secret = SigningKey::try_from(bytes)?;
        Ok(secret.into())
    }
}

fn decode_base32_hex(s: &str) -> Result<[u8; 32], KeyParsingError> {
    let mut bytes = [0u8; 32];

    let res = if s.len() == PublicKey::LENGTH * 2 {
        // hex
        data_encoding::HEXLOWER.decode_mut(s.as_bytes(), &mut bytes)
    } else {
        data_encoding::BASE32_NOPAD.decode_mut(s.to_ascii_uppercase().as_bytes(), &mut bytes)
    };
    match res {
        Ok(len) => {
            if len != PublicKey::LENGTH {
                return Err(KeyParsingError::DecodeInvalidLength);
            }
        }
        Err(partial) => return Err(partial.error.into()),
    }
    Ok(bytes)
}

#[cfg(test)]
mod tests {
    use iroh_test::{assert_eq_hex, hexdump::parse_hexdump};

    use super::*;

    #[test]
    fn test_public_key_postcard() {
        let public_key =
            PublicKey::from_str("ae58ff8833241ac82d6ff7611046ed67b5072d142c588d0063e942d9a75502b6")
                .unwrap();
        let bytes = postcard::to_stdvec(&public_key).unwrap();
        let expected =
            parse_hexdump("ae58ff8833241ac82d6ff7611046ed67b5072d142c588d0063e942d9a75502b6")
                .unwrap();
        assert_eq_hex!(bytes, expected);
    }

    #[test]
    fn public_key_postcard() {
        let key = PublicKey::from_bytes(&[0; 32]).unwrap();
        let bytes = postcard::to_stdvec(&key).unwrap();
        let key2: PublicKey = postcard::from_bytes(&bytes).unwrap();
        assert_eq!(key, key2);
    }

    #[test]
    fn public_key_json() {
        let key = PublicKey::from_bytes(&[0; 32]).unwrap();
        let bytes = serde_json::to_string(&key).unwrap();
        let key2: PublicKey = serde_json::from_str(&bytes).unwrap();
        assert_eq!(key, key2);
    }

    #[test]
    fn test_display_from_str() {
        let key = SecretKey::generate(&mut rand::thread_rng());
        assert_eq!(
            SecretKey::from_str(&key.to_string()).unwrap().to_bytes(),
            key.to_bytes()
        );

        assert_eq!(
            PublicKey::from_str(&key.public().to_string()).unwrap(),
            key.public()
        );
    }
}