iroh_quinn/
connection.rs

1use std::{
2    any::Any,
3    fmt,
4    future::Future,
5    io,
6    net::{IpAddr, SocketAddr},
7    pin::Pin,
8    sync::{Arc, Weak},
9    task::{Context, Poll, Waker, ready},
10};
11
12use bytes::Bytes;
13use pin_project_lite::pin_project;
14use rustc_hash::FxHashMap;
15use thiserror::Error;
16use tokio::sync::{Notify, futures::Notified, mpsc, oneshot, watch};
17use tracing::{Instrument, Span, debug_span};
18
19use crate::{
20    ConnectionEvent, Duration, Instant, Path, VarInt,
21    endpoint::ensure_ipv6,
22    mutex::Mutex,
23    path::OpenPath,
24    recv_stream::RecvStream,
25    runtime::{AsyncTimer, Runtime, UdpSender},
26    send_stream::SendStream,
27    udp_transmit,
28};
29use proto::{
30    ConnectionError, ConnectionHandle, ConnectionStats, Dir, EndpointEvent, PathError, PathEvent,
31    PathId, PathStats, PathStatus, Side, StreamEvent, StreamId, TransportError, TransportErrorCode,
32    congestion::Controller, iroh_hp,
33};
34
35/// In-progress connection attempt future
36#[derive(Debug)]
37pub struct Connecting {
38    conn: Option<ConnectionRef>,
39    connected: oneshot::Receiver<bool>,
40    handshake_data_ready: Option<oneshot::Receiver<()>>,
41}
42
43impl Connecting {
44    pub(crate) fn new(
45        handle: ConnectionHandle,
46        conn: proto::Connection,
47        endpoint_events: mpsc::UnboundedSender<(ConnectionHandle, EndpointEvent)>,
48        conn_events: mpsc::UnboundedReceiver<ConnectionEvent>,
49        sender: Pin<Box<dyn UdpSender>>,
50        runtime: Arc<dyn Runtime>,
51    ) -> Self {
52        let (on_handshake_data_send, on_handshake_data_recv) = oneshot::channel();
53        let (on_connected_send, on_connected_recv) = oneshot::channel();
54
55        let conn = ConnectionRef(Arc::new(ConnectionInner {
56            state: Mutex::new(State::new(
57                conn,
58                handle,
59                endpoint_events,
60                conn_events,
61                on_handshake_data_send,
62                on_connected_send,
63                sender,
64                runtime.clone(),
65            )),
66            shared: Shared::default(),
67        }));
68
69        let driver = ConnectionDriver(conn.clone());
70        runtime.spawn(Box::pin(
71            async {
72                if let Err(e) = driver.await {
73                    tracing::error!("I/O error: {e}");
74                }
75            }
76            .instrument(Span::current()),
77        ));
78
79        Self {
80            conn: Some(conn),
81            connected: on_connected_recv,
82            handshake_data_ready: Some(on_handshake_data_recv),
83        }
84    }
85
86    /// Convert into a 0-RTT or 0.5-RTT connection at the cost of weakened security
87    ///
88    /// Returns `Ok` immediately if the local endpoint is able to attempt sending 0/0.5-RTT data.
89    /// If so, the returned [`Connection`] can be used to send application data without waiting for
90    /// the rest of the handshake to complete, at the cost of weakened cryptographic security
91    /// guarantees. The returned [`ZeroRttAccepted`] future resolves when the handshake does
92    /// complete, at which point subsequently opened streams and written data will have full
93    /// cryptographic protection.
94    ///
95    /// ## Outgoing
96    ///
97    /// For outgoing connections, the initial attempt to convert to a [`Connection`] which sends
98    /// 0-RTT data will proceed if the [`crypto::ClientConfig`][crate::crypto::ClientConfig]
99    /// attempts to resume a previous TLS session. However, **the remote endpoint may not actually
100    /// _accept_ the 0-RTT data**--yet still accept the connection attempt in general. This
101    /// possibility is conveyed through the [`ZeroRttAccepted`] future--when the handshake
102    /// completes, it resolves to true if the 0-RTT data was accepted and false if it was rejected.
103    /// If it was rejected, the existence of streams opened and other application data sent prior
104    /// to the handshake completing will not be conveyed to the remote application, and local
105    /// operations on them will return `ZeroRttRejected` errors.
106    ///
107    /// A server may reject 0-RTT data at its discretion, but accepting 0-RTT data requires the
108    /// relevant resumption state to be stored in the server, which servers may limit or lose for
109    /// various reasons including not persisting resumption state across server restarts.
110    ///
111    /// If manually providing a [`crypto::ClientConfig`][crate::crypto::ClientConfig], check your
112    /// implementation's docs for 0-RTT pitfalls.
113    ///
114    /// ## Incoming
115    ///
116    /// For incoming connections, conversion to 0.5-RTT will always fully succeed. `into_0rtt` will
117    /// always return `Ok` and the [`ZeroRttAccepted`] will always resolve to true.
118    ///
119    /// If manually providing a [`crypto::ServerConfig`][crate::crypto::ServerConfig], check your
120    /// implementation's docs for 0-RTT pitfalls.
121    ///
122    /// ## Security
123    ///
124    /// On outgoing connections, this enables transmission of 0-RTT data, which is vulnerable to
125    /// replay attacks, and should therefore never invoke non-idempotent operations.
126    ///
127    /// On incoming connections, this enables transmission of 0.5-RTT data, which may be sent
128    /// before TLS client authentication has occurred, and should therefore not be used to send
129    /// data for which client authentication is being used.
130    pub fn into_0rtt(mut self) -> Result<(Connection, ZeroRttAccepted), Self> {
131        // This lock borrows `self` and would normally be dropped at the end of this scope, so we'll
132        // have to release it explicitly before returning `self` by value.
133        let conn = (self.conn.as_mut().unwrap()).state.lock("into_0rtt");
134
135        let is_ok = conn.inner.has_0rtt() || conn.inner.side().is_server();
136        drop(conn);
137
138        if is_ok {
139            let conn = self.conn.take().unwrap();
140            Ok((Connection(conn), ZeroRttAccepted(self.connected)))
141        } else {
142            Err(self)
143        }
144    }
145
146    /// Parameters negotiated during the handshake
147    ///
148    /// The dynamic type returned is determined by the configured
149    /// [`Session`](proto::crypto::Session). For the default `rustls` session, the return value can
150    /// be [`downcast`](Box::downcast) to a
151    /// [`crypto::rustls::HandshakeData`](crate::crypto::rustls::HandshakeData).
152    pub async fn handshake_data(&mut self) -> Result<Box<dyn Any>, ConnectionError> {
153        // Taking &mut self allows us to use a single oneshot channel rather than dealing with
154        // potentially many tasks waiting on the same event. It's a bit of a hack, but keeps things
155        // simple.
156        if let Some(x) = self.handshake_data_ready.take() {
157            let _ = x.await;
158        }
159        let conn = self.conn.as_ref().unwrap();
160        let inner = conn.state.lock("handshake");
161        inner
162            .inner
163            .crypto_session()
164            .handshake_data()
165            .ok_or_else(|| {
166                inner
167                    .error
168                    .clone()
169                    .expect("spurious handshake data ready notification")
170            })
171    }
172
173    /// The local IP address which was used when the peer established
174    /// the connection
175    ///
176    /// This can be different from the address the endpoint is bound to, in case
177    /// the endpoint is bound to a wildcard address like `0.0.0.0` or `::`.
178    ///
179    /// This will return `None` for clients, or when the platform does not expose this
180    /// information. See [`quinn_udp::RecvMeta::dst_ip`](udp::RecvMeta::dst_ip) for a list of
181    /// supported platforms when using [`quinn_udp`](udp) for I/O, which is the default.
182    ///
183    /// Will panic if called after `poll` has returned `Ready`.
184    pub fn local_ip(&self) -> Option<IpAddr> {
185        let conn = self.conn.as_ref().unwrap();
186        let inner = conn.state.lock("local_ip");
187
188        inner.inner.local_ip()
189    }
190
191    /// The peer's UDP address
192    ///
193    /// Will panic if called after `poll` has returned `Ready`.
194    pub fn remote_address(&self) -> SocketAddr {
195        let conn_ref: &ConnectionRef = self.conn.as_ref().expect("used after yielding Ready");
196        // TODO: another unwrap
197        conn_ref
198            .state
199            .lock("remote_address")
200            .inner
201            .path_remote_address(PathId::ZERO)
202            .expect("path exists when connecting")
203    }
204}
205
206impl Future for Connecting {
207    type Output = Result<Connection, ConnectionError>;
208    fn poll(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
209        Pin::new(&mut self.connected).poll(cx).map(|_| {
210            let conn = self.conn.take().unwrap();
211            let inner = conn.state.lock("connecting");
212            if inner.connected {
213                drop(inner);
214                Ok(Connection(conn))
215            } else {
216                Err(inner
217                    .error
218                    .clone()
219                    .expect("connected signaled without connection success or error"))
220            }
221        })
222    }
223}
224
225/// Future that completes when a connection is fully established
226///
227/// For clients, the resulting value indicates if 0-RTT was accepted. For servers, the resulting
228/// value is meaningless.
229pub struct ZeroRttAccepted(oneshot::Receiver<bool>);
230
231impl Future for ZeroRttAccepted {
232    type Output = bool;
233    fn poll(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
234        Pin::new(&mut self.0).poll(cx).map(|x| x.unwrap_or(false))
235    }
236}
237
238/// A future that drives protocol logic for a connection
239///
240/// This future handles the protocol logic for a single connection, routing events from the
241/// `Connection` API object to the `Endpoint` task and the related stream-related interfaces.
242/// It also keeps track of outstanding timeouts for the `Connection`.
243///
244/// If the connection encounters an error condition, this future will yield an error. It will
245/// terminate (yielding `Ok(())`) if the connection was closed without error. Unlike other
246/// connection-related futures, this waits for the draining period to complete to ensure that
247/// packets still in flight from the peer are handled gracefully.
248#[must_use = "connection drivers must be spawned for their connections to function"]
249#[derive(Debug)]
250struct ConnectionDriver(ConnectionRef);
251
252impl Future for ConnectionDriver {
253    type Output = Result<(), io::Error>;
254
255    fn poll(self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
256        let conn = &mut *self.0.state.lock("poll");
257
258        let span = debug_span!("drive", id = conn.handle.0);
259        let _guard = span.enter();
260
261        if let Err(e) = conn.process_conn_events(&self.0.shared, cx) {
262            conn.terminate(e, &self.0.shared);
263            return Poll::Ready(Ok(()));
264        }
265        let mut keep_going = conn.drive_transmit(cx)?;
266        // If a timer expires, there might be more to transmit. When we transmit something, we
267        // might need to reset a timer. Hence, we must loop until neither happens.
268        keep_going |= conn.drive_timer(cx);
269        conn.forward_endpoint_events();
270        conn.forward_app_events(&self.0.shared);
271
272        if !conn.inner.is_drained() {
273            if keep_going {
274                // If the connection hasn't processed all tasks, schedule it again
275                cx.waker().wake_by_ref();
276            } else {
277                conn.driver = Some(cx.waker().clone());
278            }
279            return Poll::Pending;
280        }
281        if conn.error.is_none() {
282            unreachable!("drained connections always have an error");
283        }
284        Poll::Ready(Ok(()))
285    }
286}
287
288/// A QUIC connection.
289///
290/// If all references to a connection (including every clone of the `Connection` handle, streams of
291/// incoming streams, and the various stream types) have been dropped, then the connection will be
292/// automatically closed with an `error_code` of 0 and an empty `reason`. You can also close the
293/// connection explicitly by calling [`Connection::close()`].
294///
295/// Closing the connection immediately abandons efforts to deliver data to the peer.  Upon
296/// receiving CONNECTION_CLOSE the peer *may* drop any stream data not yet delivered to the
297/// application. [`Connection::close()`] describes in more detail how to gracefully close a
298/// connection without losing application data.
299///
300/// May be cloned to obtain another handle to the same connection.
301///
302/// [`Connection::close()`]: Connection::close
303#[derive(Debug, Clone)]
304pub struct Connection(ConnectionRef);
305
306impl Connection {
307    /// Returns a weak reference to the inner connection struct.
308    pub fn weak_handle(&self) -> WeakConnectionHandle {
309        WeakConnectionHandle(Arc::downgrade(&self.0.0))
310    }
311
312    /// Initiate a new outgoing unidirectional stream.
313    ///
314    /// Streams are cheap and instantaneous to open unless blocked by flow control. As a
315    /// consequence, the peer won't be notified that a stream has been opened until the stream is
316    /// actually used.
317    pub fn open_uni(&self) -> OpenUni<'_> {
318        OpenUni {
319            conn: &self.0,
320            notify: self.0.shared.stream_budget_available[Dir::Uni as usize].notified(),
321        }
322    }
323
324    /// Initiate a new outgoing bidirectional stream.
325    ///
326    /// Streams are cheap and instantaneous to open unless blocked by flow control. As a
327    /// consequence, the peer won't be notified that a stream has been opened until the stream is
328    /// actually used. Calling [`open_bi()`] then waiting on the [`RecvStream`] without writing
329    /// anything to [`SendStream`] will never succeed.
330    ///
331    /// [`open_bi()`]: crate::Connection::open_bi
332    /// [`SendStream`]: crate::SendStream
333    /// [`RecvStream`]: crate::RecvStream
334    pub fn open_bi(&self) -> OpenBi<'_> {
335        OpenBi {
336            conn: &self.0,
337            notify: self.0.shared.stream_budget_available[Dir::Bi as usize].notified(),
338        }
339    }
340
341    /// Accept the next incoming uni-directional stream
342    pub fn accept_uni(&self) -> AcceptUni<'_> {
343        AcceptUni {
344            conn: &self.0,
345            notify: self.0.shared.stream_incoming[Dir::Uni as usize].notified(),
346        }
347    }
348
349    /// Accept the next incoming bidirectional stream
350    ///
351    /// **Important Note**: The `Connection` that calls [`open_bi()`] must write to its [`SendStream`]
352    /// before the other `Connection` is able to `accept_bi()`. Calling [`open_bi()`] then
353    /// waiting on the [`RecvStream`] without writing anything to [`SendStream`] will never succeed.
354    ///
355    /// [`accept_bi()`]: crate::Connection::accept_bi
356    /// [`open_bi()`]: crate::Connection::open_bi
357    /// [`SendStream`]: crate::SendStream
358    /// [`RecvStream`]: crate::RecvStream
359    pub fn accept_bi(&self) -> AcceptBi<'_> {
360        AcceptBi {
361            conn: &self.0,
362            notify: self.0.shared.stream_incoming[Dir::Bi as usize].notified(),
363        }
364    }
365
366    /// Receive an application datagram
367    pub fn read_datagram(&self) -> ReadDatagram<'_> {
368        ReadDatagram {
369            conn: &self.0,
370            notify: self.0.shared.datagram_received.notified(),
371        }
372    }
373
374    /// Opens a new path if no path exists yet for the remote address.
375    ///
376    /// Otherwise behaves exactly as [`open_path`].
377    ///
378    /// [`open_path`]: Self::open_path
379    pub fn open_path_ensure(&self, addr: SocketAddr, initial_status: PathStatus) -> OpenPath {
380        let mut state = self.0.state.lock("open_path");
381
382        // If endpoint::State::ipv6 is true we want to keep all our IP addresses as IPv6.
383        // If not, we do not support IPv6.  We can not access endpoint::State from here
384        // however, but either all our paths use an IPv6 address, or all our paths use an
385        // IPv4 address.  So we can use that information.
386        let ipv6 = state
387            .inner
388            .paths()
389            .iter()
390            .filter_map(|id| {
391                state
392                    .inner
393                    .path_remote_address(*id)
394                    .map(|ip| ip.is_ipv6())
395                    .ok()
396            })
397            .next()
398            .unwrap_or_default();
399        if addr.is_ipv6() && !ipv6 {
400            return OpenPath::rejected(PathError::InvalidRemoteAddress(addr));
401        }
402        let addr = if ipv6 {
403            SocketAddr::V6(ensure_ipv6(addr))
404        } else {
405            addr
406        };
407
408        let now = state.runtime.now();
409        let open_res = state.inner.open_path_ensure(addr, initial_status, now);
410        state.wake();
411        match open_res {
412            Ok((path_id, existed)) if existed => {
413                match state.open_path.get(&path_id).map(|tx| tx.subscribe()) {
414                    Some(recv) => OpenPath::new(path_id, recv, self.0.clone()),
415                    None => OpenPath::ready(path_id, self.0.clone()),
416                }
417            }
418            Ok((path_id, _)) => {
419                let (tx, rx) = watch::channel(Ok(()));
420                state.open_path.insert(path_id, tx);
421                drop(state);
422                OpenPath::new(path_id, rx, self.0.clone())
423            }
424            Err(err) => OpenPath::rejected(err),
425        }
426    }
427
428    /// Opens an additional path if the multipath extension is negotiated.
429    ///
430    /// The returned future completes once the path is either fully opened and ready to
431    /// carry application data, or if there was an error.
432    ///
433    /// Dropping the returned future does not cancel the opening of the path, the
434    /// [`PathEvent::Opened`] event will still be emitted from [`Self::path_events`] if the
435    /// path opens.  The [`PathId`] for the events can be extracted from
436    /// [`OpenPath::path_id`].
437    ///
438    /// Failure to open a path can either occur immediately, before polling the returned
439    /// future, or at a later time.  If the failure is immediate [`OpenPath::path_id`] will
440    /// return `None` and the future will be ready immediately.  If the failure happens
441    /// later, a [`PathEvent`] will be emitted.
442    pub fn open_path(&self, addr: SocketAddr, initial_status: PathStatus) -> OpenPath {
443        let mut state = self.0.state.lock("open_path");
444
445        // If endpoint::State::ipv6 is true we want to keep all our IP addresses as IPv6.
446        // If not, we do not support IPv6.  We can not access endpoint::State from here
447        // however, but either all our paths use an IPv6 address, or all our paths use an
448        // IPv4 address.  So we can use that information.
449        let ipv6 = state
450            .inner
451            .paths()
452            .iter()
453            .filter_map(|id| {
454                state
455                    .inner
456                    .path_remote_address(*id)
457                    .map(|ip| ip.is_ipv6())
458                    .ok()
459            })
460            .next()
461            .unwrap_or_default();
462        if addr.is_ipv6() && !ipv6 {
463            return OpenPath::rejected(PathError::InvalidRemoteAddress(addr));
464        }
465        let addr = if ipv6 {
466            SocketAddr::V6(ensure_ipv6(addr))
467        } else {
468            addr
469        };
470
471        let (on_open_path_send, on_open_path_recv) = watch::channel(Ok(()));
472        let now = state.runtime.now();
473        let open_res = state.inner.open_path(addr, initial_status, now);
474        state.wake();
475        match open_res {
476            Ok(path_id) => {
477                state.open_path.insert(path_id, on_open_path_send);
478                drop(state);
479                OpenPath::new(path_id, on_open_path_recv, self.0.clone())
480            }
481            Err(err) => OpenPath::rejected(err),
482        }
483    }
484
485    /// Returns the [`Path`] structure of an open path
486    pub fn path(&self, id: PathId) -> Option<Path> {
487        // TODO(flub): Using this to know if the path still exists is... hacky.
488        self.0.state.lock("path").inner.path_status(id).ok()?;
489        Some(Path {
490            id,
491            conn: self.0.clone(),
492        })
493    }
494
495    /// A broadcast receiver of [`PathEvent`]s for all paths in this connection
496    pub fn path_events(&self) -> tokio::sync::broadcast::Receiver<PathEvent> {
497        self.0.state.lock("path_events").path_events.subscribe()
498    }
499
500    /// A broadcast receiver of [`iroh_hp::Event`]s for updates about server addresses
501    pub fn nat_traversal_updates(&self) -> tokio::sync::broadcast::Receiver<iroh_hp::Event> {
502        self.0
503            .state
504            .lock("nat_traversal_updates")
505            .nat_traversal_updates
506            .subscribe()
507    }
508
509    /// Wait for the connection to be closed for any reason
510    ///
511    /// Despite the return type's name, closed connections are often not an error condition at the
512    /// application layer. Cases that might be routine include [`ConnectionError::LocallyClosed`]
513    /// and [`ConnectionError::ApplicationClosed`].
514    pub async fn closed(&self) -> ConnectionError {
515        {
516            let conn = self.0.state.lock("closed");
517            if let Some(error) = conn.error.as_ref() {
518                return error.clone();
519            }
520            // Construct the future while the lock is held to ensure we can't miss a wakeup if
521            // the `Notify` is signaled immediately after we release the lock. `await` it after
522            // the lock guard is out of scope.
523            self.0.shared.closed.notified()
524        }
525        .await;
526        self.0
527            .state
528            .lock("closed")
529            .error
530            .as_ref()
531            .expect("closed without an error")
532            .clone()
533    }
534
535    /// Wait for the connection to be closed without keeping a strong reference to the connection
536    ///
537    /// Returns a future that resolves, once the connection is closed, to a tuple of
538    /// ([`ConnectionError`], [`ConnectionStats`]).
539    ///
540    /// Calling [`Self::closed`] keeps the connection alive until it is either closed locally via [`Connection::close`]
541    /// or closed by the remote peer. This function instead does not keep the connection itself alive,
542    /// so if all *other* clones of the connection are dropped, the connection will be closed implicitly even
543    /// if there are futures returned from this function still being awaited.
544    pub fn on_closed(&self) -> OnClosed {
545        let (tx, rx) = oneshot::channel();
546        self.0.state.lock("on_closed").on_closed.push(tx);
547        OnClosed {
548            conn: self.weak_handle(),
549            rx,
550        }
551    }
552
553    /// If the connection is closed, the reason why.
554    ///
555    /// Returns `None` if the connection is still open.
556    pub fn close_reason(&self) -> Option<ConnectionError> {
557        self.0.state.lock("close_reason").error.clone()
558    }
559
560    /// Close the connection immediately.
561    ///
562    /// Pending operations will fail immediately with [`ConnectionError::LocallyClosed`]. No
563    /// more data is sent to the peer and the peer may drop buffered data upon receiving
564    /// the CONNECTION_CLOSE frame.
565    ///
566    /// `error_code` and `reason` are not interpreted, and are provided directly to the peer.
567    ///
568    /// `reason` will be truncated to fit in a single packet with overhead; to improve odds that it
569    /// is preserved in full, it should be kept under 1KiB.
570    ///
571    /// # Gracefully closing a connection
572    ///
573    /// Only the peer last receiving application data can be certain that all data is
574    /// delivered. The only reliable action it can then take is to close the connection,
575    /// potentially with a custom error code. The delivery of the final CONNECTION_CLOSE
576    /// frame is very likely if both endpoints stay online long enough, and
577    /// [`Endpoint::wait_idle()`] can be used to provide sufficient time. Otherwise, the
578    /// remote peer will time out the connection, provided that the idle timeout is not
579    /// disabled.
580    ///
581    /// The sending side can not guarantee all stream data is delivered to the remote
582    /// application. It only knows the data is delivered to the QUIC stack of the remote
583    /// endpoint. Once the local side sends a CONNECTION_CLOSE frame in response to calling
584    /// [`close()`] the remote endpoint may drop any data it received but is as yet
585    /// undelivered to the application, including data that was acknowledged as received to
586    /// the local endpoint.
587    ///
588    /// [`ConnectionError::LocallyClosed`]: crate::ConnectionError::LocallyClosed
589    /// [`Endpoint::wait_idle()`]: crate::Endpoint::wait_idle
590    /// [`close()`]: Connection::close
591    pub fn close(&self, error_code: VarInt, reason: &[u8]) {
592        let conn = &mut *self.0.state.lock("close");
593        conn.close(error_code, Bytes::copy_from_slice(reason), &self.0.shared);
594    }
595
596    /// Wait for the handshake to be confirmed.
597    ///
598    /// As a server, who must be authenticated by clients,
599    /// this happens when the handshake completes
600    /// upon receiving a TLS Finished message from the client.
601    /// In return, the server send a HANDSHAKE_DONE frame.
602    ///
603    /// As a client, this happens when receiving a HANDSHAKE_DONE frame.
604    /// At this point, the server has either accepted our authentication,
605    /// or, if client authentication is not required, accepted our lack of authentication.
606    pub async fn handshake_confirmed(&self) -> Result<(), ConnectionError> {
607        {
608            let conn = self.0.state.lock("handshake_confirmed");
609            if let Some(error) = conn.error.as_ref() {
610                return Err(error.clone());
611            }
612            if conn.handshake_confirmed {
613                return Ok(());
614            }
615            // Construct the future while the lock is held to ensure we can't miss a wakeup if
616            // the `Notify` is signaled immediately after we release the lock. `await` it after
617            // the lock guard is out of scope.
618            self.0.shared.handshake_confirmed.notified()
619        }
620        .await;
621        if let Some(error) = self.0.state.lock("handshake_confirmed").error.as_ref() {
622            Err(error.clone())
623        } else {
624            Ok(())
625        }
626    }
627
628    /// Transmit `data` as an unreliable, unordered application datagram
629    ///
630    /// Application datagrams are a low-level primitive. They may be lost or delivered out of order,
631    /// and `data` must both fit inside a single QUIC packet and be smaller than the maximum
632    /// dictated by the peer.
633    ///
634    /// Previously queued datagrams which are still unsent may be discarded to make space for this
635    /// datagram, in order of oldest to newest.
636    pub fn send_datagram(&self, data: Bytes) -> Result<(), SendDatagramError> {
637        let conn = &mut *self.0.state.lock("send_datagram");
638        if let Some(ref x) = conn.error {
639            return Err(SendDatagramError::ConnectionLost(x.clone()));
640        }
641        use proto::SendDatagramError::*;
642        match conn.inner.datagrams().send(data, true) {
643            Ok(()) => {
644                conn.wake();
645                Ok(())
646            }
647            Err(e) => Err(match e {
648                Blocked(..) => unreachable!(),
649                UnsupportedByPeer => SendDatagramError::UnsupportedByPeer,
650                Disabled => SendDatagramError::Disabled,
651                TooLarge => SendDatagramError::TooLarge,
652            }),
653        }
654    }
655
656    /// Transmit `data` as an unreliable, unordered application datagram
657    ///
658    /// Unlike [`send_datagram()`], this method will wait for buffer space during congestion
659    /// conditions, which effectively prioritizes old datagrams over new datagrams.
660    ///
661    /// See [`send_datagram()`] for details.
662    ///
663    /// [`send_datagram()`]: Connection::send_datagram
664    pub fn send_datagram_wait(&self, data: Bytes) -> SendDatagram<'_> {
665        SendDatagram {
666            conn: &self.0,
667            data: Some(data),
668            notify: self.0.shared.datagrams_unblocked.notified(),
669        }
670    }
671
672    /// Compute the maximum size of datagrams that may be passed to [`send_datagram()`].
673    ///
674    /// Returns `None` if datagrams are unsupported by the peer or disabled locally.
675    ///
676    /// This may change over the lifetime of a connection according to variation in the path MTU
677    /// estimate. The peer can also enforce an arbitrarily small fixed limit, but if the peer's
678    /// limit is large this is guaranteed to be a little over a kilobyte at minimum.
679    ///
680    /// Not necessarily the maximum size of received datagrams.
681    ///
682    /// [`send_datagram()`]: Connection::send_datagram
683    pub fn max_datagram_size(&self) -> Option<usize> {
684        self.0
685            .state
686            .lock("max_datagram_size")
687            .inner
688            .datagrams()
689            .max_size()
690    }
691
692    /// Bytes available in the outgoing datagram buffer
693    ///
694    /// When greater than zero, calling [`send_datagram()`](Self::send_datagram) with a datagram of
695    /// at most this size is guaranteed not to cause older datagrams to be dropped.
696    pub fn datagram_send_buffer_space(&self) -> usize {
697        self.0
698            .state
699            .lock("datagram_send_buffer_space")
700            .inner
701            .datagrams()
702            .send_buffer_space()
703    }
704
705    /// The side of the connection (client or server)
706    pub fn side(&self) -> Side {
707        self.0.state.lock("side").inner.side()
708    }
709
710    /// The peer's UDP address
711    ///
712    /// If [`ServerConfig::migration`] is `true`, clients may change addresses at will,
713    /// e.g. when switching to a cellular internet connection.
714    ///
715    /// If [`multipath`] is enabled this will return the address of *any*
716    /// path, and may not be consistent. Prefer [`Path::remote_address`] instead.
717    ///
718    /// [`ServerConfig::migration`]: crate::ServerConfig::migration
719    /// [`multipath`]: crate::TransportConfig::max_concurrent_multipath_paths
720    pub fn remote_address(&self) -> SocketAddr {
721        // TODO: an unwrap again
722        let state = self.0.state.lock("remote_address");
723        state
724            .inner
725            .paths()
726            .iter()
727            .filter_map(|id| state.inner.path_remote_address(*id).ok())
728            .next()
729            .unwrap()
730    }
731
732    /// The local IP address which was used when the peer established
733    /// the connection
734    ///
735    /// This can be different from the address the endpoint is bound to, in case
736    /// the endpoint is bound to a wildcard address like `0.0.0.0` or `::`.
737    ///
738    /// This will return `None` for clients, or when the platform does not expose this
739    /// information. See [`quinn_udp::RecvMeta::dst_ip`](udp::RecvMeta::dst_ip) for a list of
740    /// supported platforms when using [`quinn_udp`](udp) for I/O, which is the default.
741    pub fn local_ip(&self) -> Option<IpAddr> {
742        self.0.state.lock("local_ip").inner.local_ip()
743    }
744
745    /// Current best estimate of this connection's latency (round-trip-time)
746    pub fn rtt(&self, path_id: PathId) -> Option<Duration> {
747        self.0.state.lock("rtt").inner.rtt(path_id)
748    }
749
750    /// Returns connection statistics
751    pub fn stats(&self) -> ConnectionStats {
752        self.0.state.lock("stats").inner.stats()
753    }
754
755    /// Returns path statistics
756    pub fn path_stats(&self, path_id: PathId) -> Option<PathStats> {
757        self.0.state.lock("path_stats").inner.path_stats(path_id)
758    }
759
760    /// Current state of the congestion control algorithm, for debugging purposes
761    pub fn congestion_state(&self, path_id: PathId) -> Option<Box<dyn Controller>> {
762        self.0
763            .state
764            .lock("congestion_state")
765            .inner
766            .congestion_state(path_id)
767            .map(|c| c.clone_box())
768    }
769
770    /// Parameters negotiated during the handshake
771    ///
772    /// Guaranteed to return `Some` on fully established connections or after
773    /// [`Connecting::handshake_data()`] succeeds. See that method's documentations for details on
774    /// the returned value.
775    ///
776    /// [`Connection::handshake_data()`]: crate::Connecting::handshake_data
777    pub fn handshake_data(&self) -> Option<Box<dyn Any>> {
778        self.0
779            .state
780            .lock("handshake_data")
781            .inner
782            .crypto_session()
783            .handshake_data()
784    }
785
786    /// Cryptographic identity of the peer
787    ///
788    /// The dynamic type returned is determined by the configured
789    /// [`Session`](proto::crypto::Session). For the default `rustls` session, the return value can
790    /// be [`downcast`](Box::downcast) to a <code>Vec<[rustls::pki_types::CertificateDer]></code>
791    pub fn peer_identity(&self) -> Option<Box<dyn Any>> {
792        self.0
793            .state
794            .lock("peer_identity")
795            .inner
796            .crypto_session()
797            .peer_identity()
798    }
799
800    /// A stable identifier for this connection
801    ///
802    /// Peer addresses and connection IDs can change, but this value will remain
803    /// fixed for the lifetime of the connection.
804    pub fn stable_id(&self) -> usize {
805        self.0.stable_id()
806    }
807
808    /// Update traffic keys spontaneously
809    ///
810    /// This primarily exists for testing purposes.
811    pub fn force_key_update(&self) {
812        self.0
813            .state
814            .lock("force_key_update")
815            .inner
816            .force_key_update()
817    }
818
819    /// Derive keying material from this connection's TLS session secrets.
820    ///
821    /// When both peers call this method with the same `label` and `context`
822    /// arguments and `output` buffers of equal length, they will get the
823    /// same sequence of bytes in `output`. These bytes are cryptographically
824    /// strong and pseudorandom, and are suitable for use as keying material.
825    ///
826    /// See [RFC5705](https://tools.ietf.org/html/rfc5705) for more information.
827    pub fn export_keying_material(
828        &self,
829        output: &mut [u8],
830        label: &[u8],
831        context: &[u8],
832    ) -> Result<(), proto::crypto::ExportKeyingMaterialError> {
833        self.0
834            .state
835            .lock("export_keying_material")
836            .inner
837            .crypto_session()
838            .export_keying_material(output, label, context)
839    }
840
841    /// Modify the number of remotely initiated unidirectional streams that may be concurrently open
842    ///
843    /// No streams may be opened by the peer unless fewer than `count` are already open. Large
844    /// `count`s increase both minimum and worst-case memory consumption.
845    pub fn set_max_concurrent_uni_streams(&self, count: VarInt) {
846        let mut conn = self.0.state.lock("set_max_concurrent_uni_streams");
847        conn.inner.set_max_concurrent_streams(Dir::Uni, count);
848        // May need to send MAX_STREAMS to make progress
849        conn.wake();
850    }
851
852    /// See [`proto::TransportConfig::send_window()`]
853    pub fn set_send_window(&self, send_window: u64) {
854        let mut conn = self.0.state.lock("set_send_window");
855        conn.inner.set_send_window(send_window);
856        conn.wake();
857    }
858
859    /// See [`proto::TransportConfig::receive_window()`]
860    pub fn set_receive_window(&self, receive_window: VarInt) {
861        let mut conn = self.0.state.lock("set_receive_window");
862        conn.inner.set_receive_window(receive_window);
863        conn.wake();
864    }
865
866    /// Modify the number of remotely initiated bidirectional streams that may be concurrently open
867    ///
868    /// No streams may be opened by the peer unless fewer than `count` are already open. Large
869    /// `count`s increase both minimum and worst-case memory consumption.
870    pub fn set_max_concurrent_bi_streams(&self, count: VarInt) {
871        let mut conn = self.0.state.lock("set_max_concurrent_bi_streams");
872        conn.inner.set_max_concurrent_streams(Dir::Bi, count);
873        // May need to send MAX_STREAMS to make progress
874        conn.wake();
875    }
876
877    /// Track changed on our external address as reported by the peer.
878    pub fn observed_external_addr(&self) -> watch::Receiver<Option<SocketAddr>> {
879        let conn = self.0.state.lock("external_addr");
880        conn.observed_external_addr.subscribe()
881    }
882
883    /// Is multipath enabled?
884    // TODO(flub): not a useful API, once we do real things with multipath we can remove
885    // this again.
886    pub fn is_multipath_enabled(&self) -> bool {
887        let conn = self.0.state.lock("is_multipath_enabled");
888        conn.inner.is_multipath_negotiated()
889    }
890
891    /// Registers one address at which this endpoint might be reachable
892    ///
893    /// When the NAT traversal extension is negotiated, servers send these addresses to clients in
894    /// `ADD_ADDRESS` frames. This allows clients to obtain server address candidates to initiate
895    /// NAT traversal attempts. Clients provide their own reachable addresses in `REACH_OUT` frames
896    /// when [`Self::initiate_nat_traversal_round`] is called.
897    pub fn add_nat_traversal_address(&self, address: SocketAddr) -> Result<(), iroh_hp::Error> {
898        let mut conn = self.0.state.lock("add_nat_traversal_addresses");
899        conn.inner.add_nat_traversal_address(address)
900    }
901
902    /// Removes one or more addresses from the set of addresses at which this endpoint is reachable
903    ///
904    /// When the NAT traversal extension is negotiated, servers send address removals to
905    /// clients in `REMOVE_ADDRESS` frames. This allows clients to stop using outdated
906    /// server address candidates that are no longer valid for NAT traversal.
907    ///
908    /// For clients, removed addresses will no longer be advertised in `REACH_OUT` frames.
909    ///
910    /// Addresses not present in the set will be silently ignored.
911    pub fn remove_nat_traversal_address(&self, address: SocketAddr) -> Result<(), iroh_hp::Error> {
912        let mut conn = self.0.state.lock("remove_nat_traversal_addresses");
913        conn.inner.remove_nat_traversal_address(address)
914    }
915
916    /// Get the current local nat traversal addresses
917    pub fn get_local_nat_traversal_addresses(&self) -> Result<Vec<SocketAddr>, iroh_hp::Error> {
918        let conn = self.0.state.lock("get_local_nat_traversal_addresses");
919        conn.inner.get_local_nat_traversal_addresses()
920    }
921
922    /// Get the currently advertised nat traversal addresses by the server
923    pub fn get_remote_nat_traversal_addresses(&self) -> Result<Vec<SocketAddr>, iroh_hp::Error> {
924        let conn = self.0.state.lock("get_remote_nat_traversal_addresses");
925        conn.inner.get_remote_nat_traversal_addresses()
926    }
927
928    /// Initiates a new nat traversal round
929    ///
930    /// A nat traversal round involves advertising the client's local addresses in `REACH_OUT`
931    /// frames, and initiating probing of the known remote addresses. When a new round is
932    /// initiated, the previous one is cancelled, and paths that have not been opened are closed.
933    ///
934    /// Returns the server addresses that are now being probed.
935    pub fn initiate_nat_traversal_round(&self) -> Result<Vec<SocketAddr>, iroh_hp::Error> {
936        let mut conn = self.0.state.lock("initiate_nat_traversal_round");
937        let now = conn.runtime.now();
938        conn.inner.initiate_nat_traversal_round(now)
939    }
940}
941
942pin_project! {
943    /// Future produced by [`Connection::open_uni`]
944    pub struct OpenUni<'a> {
945        conn: &'a ConnectionRef,
946        #[pin]
947        notify: Notified<'a>,
948    }
949}
950
951impl Future for OpenUni<'_> {
952    type Output = Result<SendStream, ConnectionError>;
953    fn poll(self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Self::Output> {
954        let this = self.project();
955        let (conn, id, is_0rtt) = ready!(poll_open(ctx, this.conn, this.notify, Dir::Uni))?;
956        Poll::Ready(Ok(SendStream::new(conn, id, is_0rtt)))
957    }
958}
959
960pin_project! {
961    /// Future produced by [`Connection::open_bi`]
962    pub struct OpenBi<'a> {
963        conn: &'a ConnectionRef,
964        #[pin]
965        notify: Notified<'a>,
966    }
967}
968
969impl Future for OpenBi<'_> {
970    type Output = Result<(SendStream, RecvStream), ConnectionError>;
971    fn poll(self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Self::Output> {
972        let this = self.project();
973        let (conn, id, is_0rtt) = ready!(poll_open(ctx, this.conn, this.notify, Dir::Bi))?;
974
975        Poll::Ready(Ok((
976            SendStream::new(conn.clone(), id, is_0rtt),
977            RecvStream::new(conn, id, is_0rtt),
978        )))
979    }
980}
981
982fn poll_open<'a>(
983    ctx: &mut Context<'_>,
984    conn: &'a ConnectionRef,
985    mut notify: Pin<&mut Notified<'a>>,
986    dir: Dir,
987) -> Poll<Result<(ConnectionRef, StreamId, bool), ConnectionError>> {
988    let mut state = conn.state.lock("poll_open");
989    if let Some(ref e) = state.error {
990        return Poll::Ready(Err(e.clone()));
991    } else if let Some(id) = state.inner.streams().open(dir) {
992        let is_0rtt = state.inner.side().is_client() && state.inner.is_handshaking();
993        drop(state); // Release the lock so clone can take it
994        return Poll::Ready(Ok((conn.clone(), id, is_0rtt)));
995    }
996    loop {
997        match notify.as_mut().poll(ctx) {
998            // `state` lock ensures we didn't race with readiness
999            Poll::Pending => return Poll::Pending,
1000            // Spurious wakeup, get a new future
1001            Poll::Ready(()) => {
1002                notify.set(conn.shared.stream_budget_available[dir as usize].notified())
1003            }
1004        }
1005    }
1006}
1007
1008pin_project! {
1009    /// Future produced by [`Connection::accept_uni`]
1010    pub struct AcceptUni<'a> {
1011        conn: &'a ConnectionRef,
1012        #[pin]
1013        notify: Notified<'a>,
1014    }
1015}
1016
1017impl Future for AcceptUni<'_> {
1018    type Output = Result<RecvStream, ConnectionError>;
1019
1020    fn poll(self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Self::Output> {
1021        let this = self.project();
1022        let (conn, id, is_0rtt) = ready!(poll_accept(ctx, this.conn, this.notify, Dir::Uni))?;
1023        Poll::Ready(Ok(RecvStream::new(conn, id, is_0rtt)))
1024    }
1025}
1026
1027pin_project! {
1028    /// Future produced by [`Connection::accept_bi`]
1029    pub struct AcceptBi<'a> {
1030        conn: &'a ConnectionRef,
1031        #[pin]
1032        notify: Notified<'a>,
1033    }
1034}
1035
1036impl Future for AcceptBi<'_> {
1037    type Output = Result<(SendStream, RecvStream), ConnectionError>;
1038
1039    fn poll(self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Self::Output> {
1040        let this = self.project();
1041        let (conn, id, is_0rtt) = ready!(poll_accept(ctx, this.conn, this.notify, Dir::Bi))?;
1042        Poll::Ready(Ok((
1043            SendStream::new(conn.clone(), id, is_0rtt),
1044            RecvStream::new(conn, id, is_0rtt),
1045        )))
1046    }
1047}
1048
1049fn poll_accept<'a>(
1050    ctx: &mut Context<'_>,
1051    conn: &'a ConnectionRef,
1052    mut notify: Pin<&mut Notified<'a>>,
1053    dir: Dir,
1054) -> Poll<Result<(ConnectionRef, StreamId, bool), ConnectionError>> {
1055    let mut state = conn.state.lock("poll_accept");
1056    // Check for incoming streams before checking `state.error` so that already-received streams,
1057    // which are necessarily finite, can be drained from a closed connection.
1058    if let Some(id) = state.inner.streams().accept(dir) {
1059        let is_0rtt = state.inner.is_handshaking();
1060        state.wake(); // To send additional stream ID credit
1061        drop(state); // Release the lock so clone can take it
1062        return Poll::Ready(Ok((conn.clone(), id, is_0rtt)));
1063    } else if let Some(ref e) = state.error {
1064        return Poll::Ready(Err(e.clone()));
1065    }
1066    loop {
1067        match notify.as_mut().poll(ctx) {
1068            // `state` lock ensures we didn't race with readiness
1069            Poll::Pending => return Poll::Pending,
1070            // Spurious wakeup, get a new future
1071            Poll::Ready(()) => notify.set(conn.shared.stream_incoming[dir as usize].notified()),
1072        }
1073    }
1074}
1075
1076pin_project! {
1077    /// Future produced by [`Connection::read_datagram`]
1078    pub struct ReadDatagram<'a> {
1079        conn: &'a ConnectionRef,
1080        #[pin]
1081        notify: Notified<'a>,
1082    }
1083}
1084
1085impl Future for ReadDatagram<'_> {
1086    type Output = Result<Bytes, ConnectionError>;
1087    fn poll(self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Self::Output> {
1088        let mut this = self.project();
1089        let mut state = this.conn.state.lock("ReadDatagram::poll");
1090        // Check for buffered datagrams before checking `state.error` so that already-received
1091        // datagrams, which are necessarily finite, can be drained from a closed connection.
1092        if let Some(x) = state.inner.datagrams().recv() {
1093            return Poll::Ready(Ok(x));
1094        } else if let Some(ref e) = state.error {
1095            return Poll::Ready(Err(e.clone()));
1096        }
1097        loop {
1098            match this.notify.as_mut().poll(ctx) {
1099                // `state` lock ensures we didn't race with readiness
1100                Poll::Pending => return Poll::Pending,
1101                // Spurious wakeup, get a new future
1102                Poll::Ready(()) => this
1103                    .notify
1104                    .set(this.conn.shared.datagram_received.notified()),
1105            }
1106        }
1107    }
1108}
1109
1110pin_project! {
1111    /// Future produced by [`Connection::send_datagram_wait`]
1112    pub struct SendDatagram<'a> {
1113        conn: &'a ConnectionRef,
1114        data: Option<Bytes>,
1115        #[pin]
1116        notify: Notified<'a>,
1117    }
1118}
1119
1120impl Future for SendDatagram<'_> {
1121    type Output = Result<(), SendDatagramError>;
1122    fn poll(self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Self::Output> {
1123        let mut this = self.project();
1124        let mut state = this.conn.state.lock("SendDatagram::poll");
1125        if let Some(ref e) = state.error {
1126            return Poll::Ready(Err(SendDatagramError::ConnectionLost(e.clone())));
1127        }
1128        use proto::SendDatagramError::*;
1129        match state
1130            .inner
1131            .datagrams()
1132            .send(this.data.take().unwrap(), false)
1133        {
1134            Ok(()) => {
1135                state.wake();
1136                Poll::Ready(Ok(()))
1137            }
1138            Err(e) => Poll::Ready(Err(match e {
1139                Blocked(data) => {
1140                    this.data.replace(data);
1141                    loop {
1142                        match this.notify.as_mut().poll(ctx) {
1143                            Poll::Pending => return Poll::Pending,
1144                            // Spurious wakeup, get a new future
1145                            Poll::Ready(()) => this
1146                                .notify
1147                                .set(this.conn.shared.datagrams_unblocked.notified()),
1148                        }
1149                    }
1150                }
1151                UnsupportedByPeer => SendDatagramError::UnsupportedByPeer,
1152                Disabled => SendDatagramError::Disabled,
1153                TooLarge => SendDatagramError::TooLarge,
1154            })),
1155        }
1156    }
1157}
1158
1159/// Future returned by [`Connection::on_closed`]
1160///
1161/// Resolves to a tuple of ([`ConnectionError`], [`ConnectionStats`]).
1162pub struct OnClosed {
1163    rx: oneshot::Receiver<(ConnectionError, ConnectionStats)>,
1164    conn: WeakConnectionHandle,
1165}
1166
1167impl Drop for OnClosed {
1168    fn drop(&mut self) {
1169        if self.rx.is_terminated() {
1170            return;
1171        };
1172        if let Some(conn) = self.conn.upgrade() {
1173            self.rx.close();
1174            conn.0
1175                .state
1176                .lock("OnClosed::drop")
1177                .on_closed
1178                .retain(|tx| !tx.is_closed());
1179        }
1180    }
1181}
1182
1183impl Future for OnClosed {
1184    type Output = (ConnectionError, ConnectionStats);
1185
1186    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
1187        let this = self.get_mut();
1188        // The `expect` is safe because `State::drop` ensures that all senders are triggered
1189        // before being dropped.
1190        Pin::new(&mut this.rx)
1191            .poll(cx)
1192            .map(|x| x.expect("on_close sender is never dropped before sending"))
1193    }
1194}
1195
1196#[derive(Debug)]
1197pub(crate) struct ConnectionRef(Arc<ConnectionInner>);
1198
1199impl ConnectionRef {
1200    fn from_arc(inner: Arc<ConnectionInner>) -> Self {
1201        inner.state.lock("from_arc").ref_count += 1;
1202        Self(inner)
1203    }
1204
1205    fn stable_id(&self) -> usize {
1206        &*self.0 as *const _ as usize
1207    }
1208}
1209
1210impl Clone for ConnectionRef {
1211    fn clone(&self) -> Self {
1212        Self::from_arc(Arc::clone(&self.0))
1213    }
1214}
1215
1216impl Drop for ConnectionRef {
1217    fn drop(&mut self) {
1218        let conn = &mut *self.state.lock("drop");
1219        if let Some(x) = conn.ref_count.checked_sub(1) {
1220            conn.ref_count = x;
1221            if x == 0 && !conn.inner.is_closed() {
1222                // If the driver is alive, it's just it and us, so we'd better shut it down. If it's
1223                // not, we can't do any harm. If there were any streams being opened, then either
1224                // the connection will be closed for an unrelated reason or a fresh reference will
1225                // be constructed for the newly opened stream.
1226                conn.implicit_close(&self.shared);
1227            }
1228        }
1229    }
1230}
1231
1232impl std::ops::Deref for ConnectionRef {
1233    type Target = ConnectionInner;
1234    fn deref(&self) -> &Self::Target {
1235        &self.0
1236    }
1237}
1238
1239#[derive(Debug)]
1240pub(crate) struct ConnectionInner {
1241    pub(crate) state: Mutex<State>,
1242    pub(crate) shared: Shared,
1243}
1244
1245/// A handle to some connection internals, use with care.
1246///
1247/// This contains a weak reference to the connection so will not itself keep the connection
1248/// alive.
1249#[derive(Debug, Clone)]
1250pub struct WeakConnectionHandle(Weak<ConnectionInner>);
1251
1252impl WeakConnectionHandle {
1253    /// Returns `true` if the [`Connection`] associated with this handle is still alive.
1254    pub fn is_alive(&self) -> bool {
1255        self.0.upgrade().is_some()
1256    }
1257
1258    /// Upgrade the handle to a full `Connection`
1259    pub fn upgrade(&self) -> Option<Connection> {
1260        self.0
1261            .upgrade()
1262            .map(|inner| Connection(ConnectionRef::from_arc(inner)))
1263    }
1264}
1265
1266#[derive(Debug, Default)]
1267pub(crate) struct Shared {
1268    handshake_confirmed: Notify,
1269    /// Notified when new streams may be locally initiated due to an increase in stream ID flow
1270    /// control budget
1271    stream_budget_available: [Notify; 2],
1272    /// Notified when the peer has initiated a new stream
1273    stream_incoming: [Notify; 2],
1274    datagram_received: Notify,
1275    datagrams_unblocked: Notify,
1276    closed: Notify,
1277}
1278
1279pub(crate) struct State {
1280    pub(crate) inner: proto::Connection,
1281    driver: Option<Waker>,
1282    handle: ConnectionHandle,
1283    on_handshake_data: Option<oneshot::Sender<()>>,
1284    on_connected: Option<oneshot::Sender<bool>>,
1285    connected: bool,
1286    handshake_confirmed: bool,
1287    timer: Option<Pin<Box<dyn AsyncTimer>>>,
1288    timer_deadline: Option<Instant>,
1289    conn_events: mpsc::UnboundedReceiver<ConnectionEvent>,
1290    endpoint_events: mpsc::UnboundedSender<(ConnectionHandle, EndpointEvent)>,
1291    pub(crate) blocked_writers: FxHashMap<StreamId, Waker>,
1292    pub(crate) blocked_readers: FxHashMap<StreamId, Waker>,
1293    pub(crate) stopped: FxHashMap<StreamId, Arc<Notify>>,
1294    /// Always set to Some before the connection becomes drained
1295    pub(crate) error: Option<ConnectionError>,
1296    /// Tracks paths being opened
1297    open_path: FxHashMap<PathId, watch::Sender<Result<(), PathError>>>,
1298    /// Tracks paths being closed
1299    pub(crate) close_path: FxHashMap<PathId, oneshot::Sender<VarInt>>,
1300    pub(crate) path_events: tokio::sync::broadcast::Sender<PathEvent>,
1301    /// Number of live handles that can be used to initiate or handle I/O; excludes the driver
1302    ref_count: usize,
1303    sender: Pin<Box<dyn UdpSender>>,
1304    pub(crate) runtime: Arc<dyn Runtime>,
1305    send_buffer: Vec<u8>,
1306    /// We buffer a transmit when the underlying I/O would block
1307    buffered_transmit: Option<proto::Transmit>,
1308    /// Our last external address reported by the peer. When multipath is enabled, this will be the
1309    /// last report across all paths.
1310    pub(crate) observed_external_addr: watch::Sender<Option<SocketAddr>>,
1311    pub(crate) nat_traversal_updates: tokio::sync::broadcast::Sender<iroh_hp::Event>,
1312    on_closed: Vec<oneshot::Sender<(ConnectionError, ConnectionStats)>>,
1313}
1314
1315impl State {
1316    #[allow(clippy::too_many_arguments)]
1317    fn new(
1318        inner: proto::Connection,
1319        handle: ConnectionHandle,
1320        endpoint_events: mpsc::UnboundedSender<(ConnectionHandle, EndpointEvent)>,
1321        conn_events: mpsc::UnboundedReceiver<ConnectionEvent>,
1322        on_handshake_data: oneshot::Sender<()>,
1323        on_connected: oneshot::Sender<bool>,
1324        sender: Pin<Box<dyn UdpSender>>,
1325        runtime: Arc<dyn Runtime>,
1326    ) -> Self {
1327        Self {
1328            inner,
1329            driver: None,
1330            handle,
1331            on_handshake_data: Some(on_handshake_data),
1332            on_connected: Some(on_connected),
1333            connected: false,
1334            handshake_confirmed: false,
1335            timer: None,
1336            timer_deadline: None,
1337            conn_events,
1338            endpoint_events,
1339            blocked_writers: FxHashMap::default(),
1340            blocked_readers: FxHashMap::default(),
1341            stopped: FxHashMap::default(),
1342            open_path: FxHashMap::default(),
1343            close_path: FxHashMap::default(),
1344            error: None,
1345            ref_count: 0,
1346            sender,
1347            runtime,
1348            send_buffer: Vec::new(),
1349            buffered_transmit: None,
1350            path_events: tokio::sync::broadcast::channel(32).0,
1351            observed_external_addr: watch::Sender::new(None),
1352            nat_traversal_updates: tokio::sync::broadcast::channel(32).0,
1353            on_closed: Vec::new(),
1354        }
1355    }
1356
1357    fn drive_transmit(&mut self, cx: &mut Context) -> io::Result<bool> {
1358        let now = self.runtime.now();
1359        let mut transmits = 0;
1360
1361        let max_datagrams = self
1362            .sender
1363            .max_transmit_segments()
1364            .min(MAX_TRANSMIT_SEGMENTS);
1365
1366        loop {
1367            // Retry the last transmit, or get a new one.
1368            let t = match self.buffered_transmit.take() {
1369                Some(t) => t,
1370                None => {
1371                    self.send_buffer.clear();
1372                    match self
1373                        .inner
1374                        .poll_transmit(now, max_datagrams, &mut self.send_buffer)
1375                    {
1376                        Some(t) => {
1377                            transmits += match t.segment_size {
1378                                None => 1,
1379                                Some(s) => t.size.div_ceil(s), // round up
1380                            };
1381                            t
1382                        }
1383                        None => break,
1384                    }
1385                }
1386            };
1387
1388            let len = t.size;
1389            match self
1390                .sender
1391                .as_mut()
1392                .poll_send(&udp_transmit(&t, &self.send_buffer[..len]), cx)
1393            {
1394                Poll::Pending => {
1395                    self.buffered_transmit = Some(t);
1396                    return Ok(false);
1397                }
1398                Poll::Ready(Err(e)) => return Err(e),
1399                Poll::Ready(Ok(())) => {}
1400            }
1401
1402            if transmits >= MAX_TRANSMIT_DATAGRAMS {
1403                // TODO: What isn't ideal here yet is that if we don't poll all
1404                // datagrams that could be sent we don't go into the `app_limited`
1405                // state and CWND continues to grow until we get here the next time.
1406                // See https://github.com/quinn-rs/quinn/issues/1126
1407                return Ok(true);
1408            }
1409        }
1410
1411        Ok(false)
1412    }
1413
1414    fn forward_endpoint_events(&mut self) {
1415        while let Some(event) = self.inner.poll_endpoint_events() {
1416            // If the endpoint driver is gone, noop.
1417            let _ = self.endpoint_events.send((self.handle, event));
1418        }
1419    }
1420
1421    /// If this returns `Err`, the endpoint is dead, so the driver should exit immediately.
1422    fn process_conn_events(
1423        &mut self,
1424        shared: &Shared,
1425        cx: &mut Context,
1426    ) -> Result<(), ConnectionError> {
1427        loop {
1428            match self.conn_events.poll_recv(cx) {
1429                Poll::Ready(Some(ConnectionEvent::Rebind(sender))) => {
1430                    self.sender = sender;
1431                    self.inner.local_address_changed();
1432                }
1433                Poll::Ready(Some(ConnectionEvent::Proto(event))) => {
1434                    self.inner.handle_event(event);
1435                }
1436                Poll::Ready(Some(ConnectionEvent::Close { reason, error_code })) => {
1437                    self.close(error_code, reason, shared);
1438                }
1439                Poll::Ready(None) => {
1440                    return Err(ConnectionError::TransportError(TransportError::new(
1441                        TransportErrorCode::INTERNAL_ERROR,
1442                        "endpoint driver future was dropped".to_string(),
1443                    )));
1444                }
1445                Poll::Pending => {
1446                    return Ok(());
1447                }
1448            }
1449        }
1450    }
1451
1452    fn forward_app_events(&mut self, shared: &Shared) {
1453        while let Some(event) = self.inner.poll() {
1454            use proto::Event::*;
1455            match event {
1456                HandshakeDataReady => {
1457                    if let Some(x) = self.on_handshake_data.take() {
1458                        let _ = x.send(());
1459                    }
1460                }
1461                Connected => {
1462                    self.connected = true;
1463                    if let Some(x) = self.on_connected.take() {
1464                        // We don't care if the on-connected future was dropped
1465                        let _ = x.send(self.inner.accepted_0rtt());
1466                    }
1467                    if self.inner.side().is_client() && !self.inner.accepted_0rtt() {
1468                        // Wake up rejected 0-RTT streams so they can fail immediately with
1469                        // `ZeroRttRejected` errors.
1470                        wake_all(&mut self.blocked_writers);
1471                        wake_all(&mut self.blocked_readers);
1472                        wake_all_notify(&mut self.stopped);
1473                    }
1474                }
1475                HandshakeConfirmed => {
1476                    self.handshake_confirmed = true;
1477                    shared.handshake_confirmed.notify_waiters();
1478                }
1479                ConnectionLost { reason } => {
1480                    self.terminate(reason, shared);
1481                }
1482                Stream(StreamEvent::Writable { id }) => wake_stream(id, &mut self.blocked_writers),
1483                Stream(StreamEvent::Opened { dir: Dir::Uni }) => {
1484                    shared.stream_incoming[Dir::Uni as usize].notify_waiters();
1485                }
1486                Stream(StreamEvent::Opened { dir: Dir::Bi }) => {
1487                    shared.stream_incoming[Dir::Bi as usize].notify_waiters();
1488                }
1489                DatagramReceived => {
1490                    shared.datagram_received.notify_waiters();
1491                }
1492                DatagramsUnblocked => {
1493                    shared.datagrams_unblocked.notify_waiters();
1494                }
1495                Stream(StreamEvent::Readable { id }) => wake_stream(id, &mut self.blocked_readers),
1496                Stream(StreamEvent::Available { dir }) => {
1497                    // Might mean any number of streams are ready, so we wake up everyone
1498                    shared.stream_budget_available[dir as usize].notify_waiters();
1499                }
1500                Stream(StreamEvent::Finished { id }) => wake_stream_notify(id, &mut self.stopped),
1501                Stream(StreamEvent::Stopped { id, .. }) => {
1502                    wake_stream_notify(id, &mut self.stopped);
1503                    wake_stream(id, &mut self.blocked_writers);
1504                }
1505                Path(ref evt @ PathEvent::ObservedAddr { addr: observed, .. }) => {
1506                    self.path_events.send(evt.clone()).ok();
1507                    self.observed_external_addr.send_if_modified(|addr| {
1508                        let old = addr.replace(observed);
1509                        old != *addr
1510                    });
1511                }
1512                Path(ref evt @ PathEvent::Opened { id }) => {
1513                    self.path_events.send(evt.clone()).ok();
1514                    if let Some(sender) = self.open_path.remove(&id) {
1515                        sender.send_modify(|value| *value = Ok(()));
1516                    }
1517                }
1518                Path(ref evt @ PathEvent::Closed { id, error_code }) => {
1519                    self.path_events.send(evt.clone()).ok();
1520                    if let Some(sender) = self.close_path.remove(&id) {
1521                        let _ = sender.send(error_code);
1522                    }
1523                }
1524                Path(evt @ PathEvent::Abandoned { .. }) => {
1525                    self.path_events.send(evt).ok();
1526                }
1527                Path(ref evt @ PathEvent::LocallyClosed { id, error }) => {
1528                    self.path_events.send(evt.clone()).ok();
1529                    if let Some(sender) = self.open_path.remove(&id) {
1530                        sender.send_modify(|value| *value = Err(error));
1531                    }
1532                    // this will happen also for already opened paths
1533                }
1534                Path(evt @ PathEvent::RemoteStatus { .. }) => {
1535                    self.path_events.send(evt).ok();
1536                }
1537                NatTraversal(update) => {
1538                    self.nat_traversal_updates.send(update).ok();
1539                }
1540            }
1541        }
1542    }
1543
1544    fn drive_timer(&mut self, cx: &mut Context) -> bool {
1545        // Check whether we need to (re)set the timer. If so, we must poll again to ensure the
1546        // timer is registered with the runtime (and check whether it's already
1547        // expired).
1548        match self.inner.poll_timeout() {
1549            Some(deadline) => {
1550                if let Some(delay) = &mut self.timer {
1551                    // There is no need to reset the tokio timer if the deadline
1552                    // did not change
1553                    if self
1554                        .timer_deadline
1555                        .map(|current_deadline| current_deadline != deadline)
1556                        .unwrap_or(true)
1557                    {
1558                        delay.as_mut().reset(deadline);
1559                    }
1560                } else {
1561                    self.timer = Some(self.runtime.new_timer(deadline));
1562                }
1563                // Store the actual expiration time of the timer
1564                self.timer_deadline = Some(deadline);
1565            }
1566            None => {
1567                self.timer_deadline = None;
1568                return false;
1569            }
1570        }
1571
1572        if self.timer_deadline.is_none() {
1573            return false;
1574        }
1575
1576        let delay = self
1577            .timer
1578            .as_mut()
1579            .expect("timer must exist in this state")
1580            .as_mut();
1581        if delay.poll(cx).is_pending() {
1582            // Since there wasn't a timeout event, there is nothing new
1583            // for the connection to do
1584            return false;
1585        }
1586
1587        // A timer expired, so the caller needs to check for
1588        // new transmits, which might cause new timers to be set.
1589        self.inner.handle_timeout(self.runtime.now());
1590        self.timer_deadline = None;
1591        true
1592    }
1593
1594    /// Wake up a blocked `Driver` task to process I/O
1595    pub(crate) fn wake(&mut self) {
1596        if let Some(x) = self.driver.take() {
1597            x.wake();
1598        }
1599    }
1600
1601    /// Used to wake up all blocked futures when the connection becomes closed for any reason
1602    fn terminate(&mut self, reason: ConnectionError, shared: &Shared) {
1603        self.error = Some(reason.clone());
1604        if let Some(x) = self.on_handshake_data.take() {
1605            let _ = x.send(());
1606        }
1607        wake_all(&mut self.blocked_writers);
1608        wake_all(&mut self.blocked_readers);
1609        shared.stream_budget_available[Dir::Uni as usize].notify_waiters();
1610        shared.stream_budget_available[Dir::Bi as usize].notify_waiters();
1611        shared.stream_incoming[Dir::Uni as usize].notify_waiters();
1612        shared.stream_incoming[Dir::Bi as usize].notify_waiters();
1613        shared.datagram_received.notify_waiters();
1614        shared.datagrams_unblocked.notify_waiters();
1615        if let Some(x) = self.on_connected.take() {
1616            let _ = x.send(false);
1617        }
1618        shared.handshake_confirmed.notify_waiters();
1619        wake_all_notify(&mut self.stopped);
1620        shared.closed.notify_waiters();
1621
1622        // Send to the registered on_closed futures.
1623        let stats = self.inner.stats();
1624        for tx in self.on_closed.drain(..) {
1625            tx.send((reason.clone(), stats.clone())).ok();
1626        }
1627    }
1628
1629    fn close(&mut self, error_code: VarInt, reason: Bytes, shared: &Shared) {
1630        self.inner.close(self.runtime.now(), error_code, reason);
1631        self.terminate(ConnectionError::LocallyClosed, shared);
1632        self.wake();
1633    }
1634
1635    /// Close for a reason other than the application's explicit request
1636    pub(crate) fn implicit_close(&mut self, shared: &Shared) {
1637        self.close(0u32.into(), Bytes::new(), shared);
1638    }
1639
1640    pub(crate) fn check_0rtt(&self) -> Result<(), ()> {
1641        if self.inner.is_handshaking()
1642            || self.inner.accepted_0rtt()
1643            || self.inner.side().is_server()
1644        {
1645            Ok(())
1646        } else {
1647            Err(())
1648        }
1649    }
1650}
1651
1652impl Drop for State {
1653    fn drop(&mut self) {
1654        if !self.inner.is_drained() {
1655            // Ensure the endpoint can tidy up
1656            let _ = self
1657                .endpoint_events
1658                .send((self.handle, proto::EndpointEvent::drained()));
1659        }
1660
1661        if !self.on_closed.is_empty() {
1662            // Ensure that all on_closed oneshot senders are triggered before dropping.
1663            let reason = self.error.as_ref().expect("closed without error reason");
1664            let stats = self.inner.stats();
1665            for tx in self.on_closed.drain(..) {
1666                tx.send((reason.clone(), stats.clone())).ok();
1667            }
1668        }
1669    }
1670}
1671
1672impl fmt::Debug for State {
1673    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1674        f.debug_struct("State").field("inner", &self.inner).finish()
1675    }
1676}
1677
1678fn wake_stream(stream_id: StreamId, wakers: &mut FxHashMap<StreamId, Waker>) {
1679    if let Some(waker) = wakers.remove(&stream_id) {
1680        waker.wake();
1681    }
1682}
1683
1684fn wake_all(wakers: &mut FxHashMap<StreamId, Waker>) {
1685    wakers.drain().for_each(|(_, waker)| waker.wake())
1686}
1687
1688fn wake_stream_notify(stream_id: StreamId, wakers: &mut FxHashMap<StreamId, Arc<Notify>>) {
1689    if let Some(notify) = wakers.remove(&stream_id) {
1690        notify.notify_waiters()
1691    }
1692}
1693
1694fn wake_all_notify(wakers: &mut FxHashMap<StreamId, Arc<Notify>>) {
1695    wakers
1696        .drain()
1697        .for_each(|(_, notify)| notify.notify_waiters())
1698}
1699
1700/// Errors that can arise when sending a datagram
1701#[derive(Debug, Error, Clone, Eq, PartialEq)]
1702pub enum SendDatagramError {
1703    /// The peer does not support receiving datagram frames
1704    #[error("datagrams not supported by peer")]
1705    UnsupportedByPeer,
1706    /// Datagram support is disabled locally
1707    #[error("datagram support disabled")]
1708    Disabled,
1709    /// The datagram is larger than the connection can currently accommodate
1710    ///
1711    /// Indicates that the path MTU minus overhead or the limit advertised by the peer has been
1712    /// exceeded.
1713    #[error("datagram too large")]
1714    TooLarge,
1715    /// The connection was lost
1716    #[error("connection lost")]
1717    ConnectionLost(#[from] ConnectionError),
1718}
1719
1720/// The maximum amount of datagrams which will be produced in a single `drive_transmit` call
1721///
1722/// This limits the amount of CPU resources consumed by datagram generation,
1723/// and allows other tasks (like receiving ACKs) to run in between.
1724const MAX_TRANSMIT_DATAGRAMS: usize = 20;
1725
1726/// The maximum amount of datagrams that are sent in a single transmit
1727///
1728/// This can be lower than the maximum platform capabilities, to avoid excessive
1729/// memory allocations when calling `poll_transmit()`. Benchmarks have shown
1730/// that numbers around 10 are a good compromise.
1731const MAX_TRANSMIT_SEGMENTS: usize = 10;