iroh_quinn/connection.rs
1use std::{
2 any::Any,
3 fmt,
4 future::Future,
5 io,
6 net::{IpAddr, SocketAddr},
7 pin::Pin,
8 sync::{Arc, Weak},
9 task::{Context, Poll, Waker, ready},
10};
11
12use bytes::Bytes;
13use pin_project_lite::pin_project;
14use rustc_hash::FxHashMap;
15use thiserror::Error;
16use tokio::sync::{Notify, futures::Notified, mpsc, oneshot, watch};
17use tracing::{Instrument, Span, debug_span};
18
19use crate::{
20 ConnectionEvent, Duration, Instant, Path, VarInt,
21 endpoint::ensure_ipv6,
22 mutex::Mutex,
23 path::OpenPath,
24 recv_stream::RecvStream,
25 runtime::{AsyncTimer, Runtime, UdpSender},
26 send_stream::SendStream,
27 udp_transmit,
28};
29use proto::{
30 ConnectionError, ConnectionHandle, ConnectionStats, Dir, EndpointEvent, PathError, PathEvent,
31 PathId, PathStats, PathStatus, Side, StreamEvent, StreamId, TransportError, TransportErrorCode,
32 congestion::Controller, iroh_hp,
33};
34
35/// In-progress connection attempt future
36#[derive(Debug)]
37pub struct Connecting {
38 conn: Option<ConnectionRef>,
39 connected: oneshot::Receiver<bool>,
40 handshake_data_ready: Option<oneshot::Receiver<()>>,
41}
42
43impl Connecting {
44 pub(crate) fn new(
45 handle: ConnectionHandle,
46 conn: proto::Connection,
47 endpoint_events: mpsc::UnboundedSender<(ConnectionHandle, EndpointEvent)>,
48 conn_events: mpsc::UnboundedReceiver<ConnectionEvent>,
49 sender: Pin<Box<dyn UdpSender>>,
50 runtime: Arc<dyn Runtime>,
51 ) -> Self {
52 let (on_handshake_data_send, on_handshake_data_recv) = oneshot::channel();
53 let (on_connected_send, on_connected_recv) = oneshot::channel();
54
55 let conn = ConnectionRef(Arc::new(ConnectionInner {
56 state: Mutex::new(State::new(
57 conn,
58 handle,
59 endpoint_events,
60 conn_events,
61 on_handshake_data_send,
62 on_connected_send,
63 sender,
64 runtime.clone(),
65 )),
66 shared: Shared::default(),
67 }));
68
69 let driver = ConnectionDriver(conn.clone());
70 runtime.spawn(Box::pin(
71 async {
72 if let Err(e) = driver.await {
73 tracing::error!("I/O error: {e}");
74 }
75 }
76 .instrument(Span::current()),
77 ));
78
79 Self {
80 conn: Some(conn),
81 connected: on_connected_recv,
82 handshake_data_ready: Some(on_handshake_data_recv),
83 }
84 }
85
86 /// Convert into a 0-RTT or 0.5-RTT connection at the cost of weakened security
87 ///
88 /// Returns `Ok` immediately if the local endpoint is able to attempt sending 0/0.5-RTT data.
89 /// If so, the returned [`Connection`] can be used to send application data without waiting for
90 /// the rest of the handshake to complete, at the cost of weakened cryptographic security
91 /// guarantees. The returned [`ZeroRttAccepted`] future resolves when the handshake does
92 /// complete, at which point subsequently opened streams and written data will have full
93 /// cryptographic protection.
94 ///
95 /// ## Outgoing
96 ///
97 /// For outgoing connections, the initial attempt to convert to a [`Connection`] which sends
98 /// 0-RTT data will proceed if the [`crypto::ClientConfig`][crate::crypto::ClientConfig]
99 /// attempts to resume a previous TLS session. However, **the remote endpoint may not actually
100 /// _accept_ the 0-RTT data**--yet still accept the connection attempt in general. This
101 /// possibility is conveyed through the [`ZeroRttAccepted`] future--when the handshake
102 /// completes, it resolves to true if the 0-RTT data was accepted and false if it was rejected.
103 /// If it was rejected, the existence of streams opened and other application data sent prior
104 /// to the handshake completing will not be conveyed to the remote application, and local
105 /// operations on them will return `ZeroRttRejected` errors.
106 ///
107 /// A server may reject 0-RTT data at its discretion, but accepting 0-RTT data requires the
108 /// relevant resumption state to be stored in the server, which servers may limit or lose for
109 /// various reasons including not persisting resumption state across server restarts.
110 ///
111 /// If manually providing a [`crypto::ClientConfig`][crate::crypto::ClientConfig], check your
112 /// implementation's docs for 0-RTT pitfalls.
113 ///
114 /// ## Incoming
115 ///
116 /// For incoming connections, conversion to 0.5-RTT will always fully succeed. `into_0rtt` will
117 /// always return `Ok` and the [`ZeroRttAccepted`] will always resolve to true.
118 ///
119 /// If manually providing a [`crypto::ServerConfig`][crate::crypto::ServerConfig], check your
120 /// implementation's docs for 0-RTT pitfalls.
121 ///
122 /// ## Security
123 ///
124 /// On outgoing connections, this enables transmission of 0-RTT data, which is vulnerable to
125 /// replay attacks, and should therefore never invoke non-idempotent operations.
126 ///
127 /// On incoming connections, this enables transmission of 0.5-RTT data, which may be sent
128 /// before TLS client authentication has occurred, and should therefore not be used to send
129 /// data for which client authentication is being used.
130 pub fn into_0rtt(mut self) -> Result<(Connection, ZeroRttAccepted), Self> {
131 // This lock borrows `self` and would normally be dropped at the end of this scope, so we'll
132 // have to release it explicitly before returning `self` by value.
133 let conn = (self.conn.as_mut().unwrap()).state.lock("into_0rtt");
134
135 let is_ok = conn.inner.has_0rtt() || conn.inner.side().is_server();
136 drop(conn);
137
138 if is_ok {
139 let conn = self.conn.take().unwrap();
140 Ok((Connection(conn), ZeroRttAccepted(self.connected)))
141 } else {
142 Err(self)
143 }
144 }
145
146 /// Parameters negotiated during the handshake
147 ///
148 /// The dynamic type returned is determined by the configured
149 /// [`Session`](proto::crypto::Session). For the default `rustls` session, the return value can
150 /// be [`downcast`](Box::downcast) to a
151 /// [`crypto::rustls::HandshakeData`](crate::crypto::rustls::HandshakeData).
152 pub async fn handshake_data(&mut self) -> Result<Box<dyn Any>, ConnectionError> {
153 // Taking &mut self allows us to use a single oneshot channel rather than dealing with
154 // potentially many tasks waiting on the same event. It's a bit of a hack, but keeps things
155 // simple.
156 if let Some(x) = self.handshake_data_ready.take() {
157 let _ = x.await;
158 }
159 let conn = self.conn.as_ref().unwrap();
160 let inner = conn.state.lock("handshake");
161 inner
162 .inner
163 .crypto_session()
164 .handshake_data()
165 .ok_or_else(|| {
166 inner
167 .error
168 .clone()
169 .expect("spurious handshake data ready notification")
170 })
171 }
172
173 /// The local IP address which was used when the peer established
174 /// the connection
175 ///
176 /// This can be different from the address the endpoint is bound to, in case
177 /// the endpoint is bound to a wildcard address like `0.0.0.0` or `::`.
178 ///
179 /// This will return `None` for clients, or when the platform does not expose this
180 /// information. See [`quinn_udp::RecvMeta::dst_ip`](udp::RecvMeta::dst_ip) for a list of
181 /// supported platforms when using [`quinn_udp`](udp) for I/O, which is the default.
182 ///
183 /// Will panic if called after `poll` has returned `Ready`.
184 pub fn local_ip(&self) -> Option<IpAddr> {
185 let conn = self.conn.as_ref().unwrap();
186 let inner = conn.state.lock("local_ip");
187
188 inner.inner.local_ip()
189 }
190
191 /// The peer's UDP address
192 ///
193 /// Will panic if called after `poll` has returned `Ready`.
194 pub fn remote_address(&self) -> SocketAddr {
195 let conn_ref: &ConnectionRef = self.conn.as_ref().expect("used after yielding Ready");
196 // TODO: another unwrap
197 conn_ref
198 .state
199 .lock("remote_address")
200 .inner
201 .path_remote_address(PathId::ZERO)
202 .expect("path exists when connecting")
203 }
204}
205
206impl Future for Connecting {
207 type Output = Result<Connection, ConnectionError>;
208 fn poll(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
209 Pin::new(&mut self.connected).poll(cx).map(|_| {
210 let conn = self.conn.take().unwrap();
211 let inner = conn.state.lock("connecting");
212 if inner.connected {
213 drop(inner);
214 Ok(Connection(conn))
215 } else {
216 Err(inner
217 .error
218 .clone()
219 .expect("connected signaled without connection success or error"))
220 }
221 })
222 }
223}
224
225/// Future that completes when a connection is fully established
226///
227/// For clients, the resulting value indicates if 0-RTT was accepted. For servers, the resulting
228/// value is meaningless.
229pub struct ZeroRttAccepted(oneshot::Receiver<bool>);
230
231impl Future for ZeroRttAccepted {
232 type Output = bool;
233 fn poll(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
234 Pin::new(&mut self.0).poll(cx).map(|x| x.unwrap_or(false))
235 }
236}
237
238/// A future that drives protocol logic for a connection
239///
240/// This future handles the protocol logic for a single connection, routing events from the
241/// `Connection` API object to the `Endpoint` task and the related stream-related interfaces.
242/// It also keeps track of outstanding timeouts for the `Connection`.
243///
244/// If the connection encounters an error condition, this future will yield an error. It will
245/// terminate (yielding `Ok(())`) if the connection was closed without error. Unlike other
246/// connection-related futures, this waits for the draining period to complete to ensure that
247/// packets still in flight from the peer are handled gracefully.
248#[must_use = "connection drivers must be spawned for their connections to function"]
249#[derive(Debug)]
250struct ConnectionDriver(ConnectionRef);
251
252impl Future for ConnectionDriver {
253 type Output = Result<(), io::Error>;
254
255 fn poll(self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
256 let conn = &mut *self.0.state.lock("poll");
257
258 let span = debug_span!("drive", id = conn.handle.0);
259 let _guard = span.enter();
260
261 if let Err(e) = conn.process_conn_events(&self.0.shared, cx) {
262 conn.terminate(e, &self.0.shared);
263 return Poll::Ready(Ok(()));
264 }
265 let mut keep_going = conn.drive_transmit(cx)?;
266 // If a timer expires, there might be more to transmit. When we transmit something, we
267 // might need to reset a timer. Hence, we must loop until neither happens.
268 keep_going |= conn.drive_timer(cx);
269 conn.forward_endpoint_events();
270 conn.forward_app_events(&self.0.shared);
271
272 if !conn.inner.is_drained() {
273 if keep_going {
274 // If the connection hasn't processed all tasks, schedule it again
275 cx.waker().wake_by_ref();
276 } else {
277 conn.driver = Some(cx.waker().clone());
278 }
279 return Poll::Pending;
280 }
281 if conn.error.is_none() {
282 unreachable!("drained connections always have an error");
283 }
284 Poll::Ready(Ok(()))
285 }
286}
287
288/// A QUIC connection.
289///
290/// If all references to a connection (including every clone of the `Connection` handle, streams of
291/// incoming streams, and the various stream types) have been dropped, then the connection will be
292/// automatically closed with an `error_code` of 0 and an empty `reason`. You can also close the
293/// connection explicitly by calling [`Connection::close()`].
294///
295/// Closing the connection immediately abandons efforts to deliver data to the peer. Upon
296/// receiving CONNECTION_CLOSE the peer *may* drop any stream data not yet delivered to the
297/// application. [`Connection::close()`] describes in more detail how to gracefully close a
298/// connection without losing application data.
299///
300/// May be cloned to obtain another handle to the same connection.
301///
302/// [`Connection::close()`]: Connection::close
303#[derive(Debug, Clone)]
304pub struct Connection(ConnectionRef);
305
306impl Connection {
307 /// Returns a weak reference to the inner connection struct.
308 pub fn weak_handle(&self) -> WeakConnectionHandle {
309 WeakConnectionHandle(Arc::downgrade(&self.0.0))
310 }
311
312 /// Initiate a new outgoing unidirectional stream.
313 ///
314 /// Streams are cheap and instantaneous to open unless blocked by flow control. As a
315 /// consequence, the peer won't be notified that a stream has been opened until the stream is
316 /// actually used.
317 pub fn open_uni(&self) -> OpenUni<'_> {
318 OpenUni {
319 conn: &self.0,
320 notify: self.0.shared.stream_budget_available[Dir::Uni as usize].notified(),
321 }
322 }
323
324 /// Initiate a new outgoing bidirectional stream.
325 ///
326 /// Streams are cheap and instantaneous to open unless blocked by flow control. As a
327 /// consequence, the peer won't be notified that a stream has been opened until the stream is
328 /// actually used. Calling [`open_bi()`] then waiting on the [`RecvStream`] without writing
329 /// anything to [`SendStream`] will never succeed.
330 ///
331 /// [`open_bi()`]: crate::Connection::open_bi
332 /// [`SendStream`]: crate::SendStream
333 /// [`RecvStream`]: crate::RecvStream
334 pub fn open_bi(&self) -> OpenBi<'_> {
335 OpenBi {
336 conn: &self.0,
337 notify: self.0.shared.stream_budget_available[Dir::Bi as usize].notified(),
338 }
339 }
340
341 /// Accept the next incoming uni-directional stream
342 pub fn accept_uni(&self) -> AcceptUni<'_> {
343 AcceptUni {
344 conn: &self.0,
345 notify: self.0.shared.stream_incoming[Dir::Uni as usize].notified(),
346 }
347 }
348
349 /// Accept the next incoming bidirectional stream
350 ///
351 /// **Important Note**: The `Connection` that calls [`open_bi()`] must write to its [`SendStream`]
352 /// before the other `Connection` is able to `accept_bi()`. Calling [`open_bi()`] then
353 /// waiting on the [`RecvStream`] without writing anything to [`SendStream`] will never succeed.
354 ///
355 /// [`accept_bi()`]: crate::Connection::accept_bi
356 /// [`open_bi()`]: crate::Connection::open_bi
357 /// [`SendStream`]: crate::SendStream
358 /// [`RecvStream`]: crate::RecvStream
359 pub fn accept_bi(&self) -> AcceptBi<'_> {
360 AcceptBi {
361 conn: &self.0,
362 notify: self.0.shared.stream_incoming[Dir::Bi as usize].notified(),
363 }
364 }
365
366 /// Receive an application datagram
367 pub fn read_datagram(&self) -> ReadDatagram<'_> {
368 ReadDatagram {
369 conn: &self.0,
370 notify: self.0.shared.datagram_received.notified(),
371 }
372 }
373
374 /// Opens a new path if no path exists yet for the remote address.
375 ///
376 /// Otherwise behaves exactly as [`open_path`].
377 ///
378 /// [`open_path`]: Self::open_path
379 pub fn open_path_ensure(
380 &self,
381 addr: SocketAddr,
382 initial_status: PathStatus,
383 rtt_hint: Option<Duration>,
384 ) -> OpenPath {
385 let mut state = self.0.state.lock("open_path");
386
387 // If endpoint::State::ipv6 is true we want to keep all our IP addresses as IPv6.
388 // If not, we do not support IPv6. We can not access endpoint::State from here
389 // however, but either all our paths use an IPv6 address, or all our paths use an
390 // IPv4 address. So we can use that information.
391 let ipv6 = state
392 .inner
393 .paths()
394 .iter()
395 .filter_map(|id| {
396 state
397 .inner
398 .path_remote_address(*id)
399 .map(|ip| ip.is_ipv6())
400 .ok()
401 })
402 .next()
403 .unwrap_or_default();
404 if addr.is_ipv6() && !ipv6 {
405 return OpenPath::rejected(PathError::InvalidRemoteAddress(addr));
406 }
407 let addr = if ipv6 {
408 SocketAddr::V6(ensure_ipv6(addr))
409 } else {
410 addr
411 };
412
413 let now = state.runtime.now();
414 let open_res = state
415 .inner
416 .open_path_ensure(addr, initial_status, now, rtt_hint);
417 state.wake();
418 match open_res {
419 Ok((path_id, existed)) if existed => {
420 match state.open_path.get(&path_id).map(|tx| tx.subscribe()) {
421 Some(recv) => OpenPath::new(path_id, recv, self.0.clone()),
422 None => OpenPath::ready(path_id, self.0.clone()),
423 }
424 }
425 Ok((path_id, _)) => {
426 let (tx, rx) = watch::channel(Ok(()));
427 state.open_path.insert(path_id, tx);
428 drop(state);
429 OpenPath::new(path_id, rx, self.0.clone())
430 }
431 Err(err) => OpenPath::rejected(err),
432 }
433 }
434
435 /// Opens an additional path if the multipath extension is negotiated.
436 ///
437 /// The returned future completes once the path is either fully opened and ready to
438 /// carry application data, or if there was an error.
439 ///
440 /// Dropping the returned future does not cancel the opening of the path, the
441 /// [`PathEvent::Opened`] event will still be emitted from [`Self::path_events`] if the
442 /// path opens. The [`PathId`] for the events can be extracted from
443 /// [`OpenPath::path_id`].
444 ///
445 /// Failure to open a path can either occur immediately, before polling the returned
446 /// future, or at a later time. If the failure is immediate [`OpenPath::path_id`] will
447 /// return `None` and the future will be ready immediately. If the failure happens
448 /// later, a [`PathEvent`] will be emitted.
449 pub fn open_path(
450 &self,
451 addr: SocketAddr,
452 initial_status: PathStatus,
453 rtt_hint: Option<Duration>,
454 ) -> OpenPath {
455 let mut state = self.0.state.lock("open_path");
456
457 // If endpoint::State::ipv6 is true we want to keep all our IP addresses as IPv6.
458 // If not, we do not support IPv6. We can not access endpoint::State from here
459 // however, but either all our paths use an IPv6 address, or all our paths use an
460 // IPv4 address. So we can use that information.
461 let ipv6 = state
462 .inner
463 .paths()
464 .iter()
465 .filter_map(|id| {
466 state
467 .inner
468 .path_remote_address(*id)
469 .map(|ip| ip.is_ipv6())
470 .ok()
471 })
472 .next()
473 .unwrap_or_default();
474 if addr.is_ipv6() && !ipv6 {
475 return OpenPath::rejected(PathError::InvalidRemoteAddress(addr));
476 }
477 let addr = if ipv6 {
478 SocketAddr::V6(ensure_ipv6(addr))
479 } else {
480 addr
481 };
482
483 let (on_open_path_send, on_open_path_recv) = watch::channel(Ok(()));
484 let now = state.runtime.now();
485 let open_res = state.inner.open_path(addr, initial_status, now, rtt_hint);
486 state.wake();
487 match open_res {
488 Ok(path_id) => {
489 state.open_path.insert(path_id, on_open_path_send);
490 drop(state);
491 OpenPath::new(path_id, on_open_path_recv, self.0.clone())
492 }
493 Err(err) => OpenPath::rejected(err),
494 }
495 }
496
497 /// Returns the [`Path`] structure of an open path
498 pub fn path(&self, id: PathId) -> Option<Path> {
499 // TODO(flub): Using this to know if the path still exists is... hacky.
500 self.0.state.lock("path").inner.path_status(id).ok()?;
501 Some(Path {
502 id,
503 conn: self.0.clone(),
504 })
505 }
506
507 /// A broadcast receiver of [`PathEvent`]s for all paths in this connection
508 pub fn path_events(&self) -> tokio::sync::broadcast::Receiver<PathEvent> {
509 self.0.state.lock("path_events").path_events.subscribe()
510 }
511
512 /// A broadcast receiver of [`iroh_hp::Event`]s for updates about server addresses
513 pub fn nat_traversal_updates(&self) -> tokio::sync::broadcast::Receiver<iroh_hp::Event> {
514 self.0
515 .state
516 .lock("nat_traversal_updates")
517 .nat_traversal_updates
518 .subscribe()
519 }
520
521 /// Wait for the connection to be closed for any reason
522 ///
523 /// Despite the return type's name, closed connections are often not an error condition at the
524 /// application layer. Cases that might be routine include [`ConnectionError::LocallyClosed`]
525 /// and [`ConnectionError::ApplicationClosed`].
526 pub async fn closed(&self) -> ConnectionError {
527 {
528 let conn = self.0.state.lock("closed");
529 if let Some(error) = conn.error.as_ref() {
530 return error.clone();
531 }
532 // Construct the future while the lock is held to ensure we can't miss a wakeup if
533 // the `Notify` is signaled immediately after we release the lock. `await` it after
534 // the lock guard is out of scope.
535 self.0.shared.closed.notified()
536 }
537 .await;
538 self.0
539 .state
540 .lock("closed")
541 .error
542 .as_ref()
543 .expect("closed without an error")
544 .clone()
545 }
546
547 /// Wait for the connection to be closed without keeping a strong reference to the connection
548 ///
549 /// Returns a future that resolves, once the connection is closed, to a tuple of
550 /// ([`ConnectionError`], [`ConnectionStats`]).
551 ///
552 /// Calling [`Self::closed`] keeps the connection alive until it is either closed locally via [`Connection::close`]
553 /// or closed by the remote peer. This function instead does not keep the connection itself alive,
554 /// so if all *other* clones of the connection are dropped, the connection will be closed implicitly even
555 /// if there are futures returned from this function still being awaited.
556 pub fn on_closed(&self) -> OnClosed {
557 let (tx, rx) = oneshot::channel();
558 self.0.state.lock("on_closed").on_closed.push(tx);
559 OnClosed {
560 conn: self.weak_handle(),
561 rx,
562 }
563 }
564
565 /// If the connection is closed, the reason why.
566 ///
567 /// Returns `None` if the connection is still open.
568 pub fn close_reason(&self) -> Option<ConnectionError> {
569 self.0.state.lock("close_reason").error.clone()
570 }
571
572 /// Close the connection immediately.
573 ///
574 /// Pending operations will fail immediately with [`ConnectionError::LocallyClosed`]. No
575 /// more data is sent to the peer and the peer may drop buffered data upon receiving
576 /// the CONNECTION_CLOSE frame.
577 ///
578 /// `error_code` and `reason` are not interpreted, and are provided directly to the peer.
579 ///
580 /// `reason` will be truncated to fit in a single packet with overhead; to improve odds that it
581 /// is preserved in full, it should be kept under 1KiB.
582 ///
583 /// # Gracefully closing a connection
584 ///
585 /// Only the peer last receiving application data can be certain that all data is
586 /// delivered. The only reliable action it can then take is to close the connection,
587 /// potentially with a custom error code. The delivery of the final CONNECTION_CLOSE
588 /// frame is very likely if both endpoints stay online long enough, and
589 /// [`Endpoint::wait_idle()`] can be used to provide sufficient time. Otherwise, the
590 /// remote peer will time out the connection, provided that the idle timeout is not
591 /// disabled.
592 ///
593 /// The sending side can not guarantee all stream data is delivered to the remote
594 /// application. It only knows the data is delivered to the QUIC stack of the remote
595 /// endpoint. Once the local side sends a CONNECTION_CLOSE frame in response to calling
596 /// [`close()`] the remote endpoint may drop any data it received but is as yet
597 /// undelivered to the application, including data that was acknowledged as received to
598 /// the local endpoint.
599 ///
600 /// [`ConnectionError::LocallyClosed`]: crate::ConnectionError::LocallyClosed
601 /// [`Endpoint::wait_idle()`]: crate::Endpoint::wait_idle
602 /// [`close()`]: Connection::close
603 pub fn close(&self, error_code: VarInt, reason: &[u8]) {
604 let conn = &mut *self.0.state.lock("close");
605 conn.close(error_code, Bytes::copy_from_slice(reason), &self.0.shared);
606 }
607
608 /// Wait for the handshake to be confirmed.
609 ///
610 /// As a server, who must be authenticated by clients,
611 /// this happens when the handshake completes
612 /// upon receiving a TLS Finished message from the client.
613 /// In return, the server send a HANDSHAKE_DONE frame.
614 ///
615 /// As a client, this happens when receiving a HANDSHAKE_DONE frame.
616 /// At this point, the server has either accepted our authentication,
617 /// or, if client authentication is not required, accepted our lack of authentication.
618 pub async fn handshake_confirmed(&self) -> Result<(), ConnectionError> {
619 {
620 let conn = self.0.state.lock("handshake_confirmed");
621 if let Some(error) = conn.error.as_ref() {
622 return Err(error.clone());
623 }
624 if conn.handshake_confirmed {
625 return Ok(());
626 }
627 // Construct the future while the lock is held to ensure we can't miss a wakeup if
628 // the `Notify` is signaled immediately after we release the lock. `await` it after
629 // the lock guard is out of scope.
630 self.0.shared.handshake_confirmed.notified()
631 }
632 .await;
633 if let Some(error) = self.0.state.lock("handshake_confirmed").error.as_ref() {
634 Err(error.clone())
635 } else {
636 Ok(())
637 }
638 }
639
640 /// Transmit `data` as an unreliable, unordered application datagram
641 ///
642 /// Application datagrams are a low-level primitive. They may be lost or delivered out of order,
643 /// and `data` must both fit inside a single QUIC packet and be smaller than the maximum
644 /// dictated by the peer.
645 ///
646 /// Previously queued datagrams which are still unsent may be discarded to make space for this
647 /// datagram, in order of oldest to newest.
648 pub fn send_datagram(&self, data: Bytes) -> Result<(), SendDatagramError> {
649 let conn = &mut *self.0.state.lock("send_datagram");
650 if let Some(ref x) = conn.error {
651 return Err(SendDatagramError::ConnectionLost(x.clone()));
652 }
653 use proto::SendDatagramError::*;
654 match conn.inner.datagrams().send(data, true) {
655 Ok(()) => {
656 conn.wake();
657 Ok(())
658 }
659 Err(e) => Err(match e {
660 Blocked(..) => unreachable!(),
661 UnsupportedByPeer => SendDatagramError::UnsupportedByPeer,
662 Disabled => SendDatagramError::Disabled,
663 TooLarge => SendDatagramError::TooLarge,
664 }),
665 }
666 }
667
668 /// Transmit `data` as an unreliable, unordered application datagram
669 ///
670 /// Unlike [`send_datagram()`], this method will wait for buffer space during congestion
671 /// conditions, which effectively prioritizes old datagrams over new datagrams.
672 ///
673 /// See [`send_datagram()`] for details.
674 ///
675 /// [`send_datagram()`]: Connection::send_datagram
676 pub fn send_datagram_wait(&self, data: Bytes) -> SendDatagram<'_> {
677 SendDatagram {
678 conn: &self.0,
679 data: Some(data),
680 notify: self.0.shared.datagrams_unblocked.notified(),
681 }
682 }
683
684 /// Compute the maximum size of datagrams that may be passed to [`send_datagram()`].
685 ///
686 /// Returns `None` if datagrams are unsupported by the peer or disabled locally.
687 ///
688 /// This may change over the lifetime of a connection according to variation in the path MTU
689 /// estimate. The peer can also enforce an arbitrarily small fixed limit, but if the peer's
690 /// limit is large this is guaranteed to be a little over a kilobyte at minimum.
691 ///
692 /// Not necessarily the maximum size of received datagrams.
693 ///
694 /// [`send_datagram()`]: Connection::send_datagram
695 pub fn max_datagram_size(&self) -> Option<usize> {
696 self.0
697 .state
698 .lock("max_datagram_size")
699 .inner
700 .datagrams()
701 .max_size()
702 }
703
704 /// Bytes available in the outgoing datagram buffer
705 ///
706 /// When greater than zero, calling [`send_datagram()`](Self::send_datagram) with a datagram of
707 /// at most this size is guaranteed not to cause older datagrams to be dropped.
708 pub fn datagram_send_buffer_space(&self) -> usize {
709 self.0
710 .state
711 .lock("datagram_send_buffer_space")
712 .inner
713 .datagrams()
714 .send_buffer_space()
715 }
716
717 /// The side of the connection (client or server)
718 pub fn side(&self) -> Side {
719 self.0.state.lock("side").inner.side()
720 }
721
722 /// The peer's UDP address
723 ///
724 /// If [`ServerConfig::migration`] is `true`, clients may change addresses at will,
725 /// e.g. when switching to a cellular internet connection.
726 ///
727 /// If [`multipath`] is enabled this will return the address of *any*
728 /// path, and may not be consistent. Prefer [`Path::remote_address`] instead.
729 ///
730 /// [`ServerConfig::migration`]: crate::ServerConfig::migration
731 /// [`multipath`]: crate::TransportConfig::max_concurrent_multipath_paths
732 pub fn remote_address(&self) -> SocketAddr {
733 // TODO: an unwrap again
734 let state = self.0.state.lock("remote_address");
735 state
736 .inner
737 .paths()
738 .iter()
739 .filter_map(|id| state.inner.path_remote_address(*id).ok())
740 .next()
741 .unwrap()
742 }
743
744 /// The local IP address which was used when the peer established
745 /// the connection
746 ///
747 /// This can be different from the address the endpoint is bound to, in case
748 /// the endpoint is bound to a wildcard address like `0.0.0.0` or `::`.
749 ///
750 /// This will return `None` for clients, or when the platform does not expose this
751 /// information. See [`quinn_udp::RecvMeta::dst_ip`](udp::RecvMeta::dst_ip) for a list of
752 /// supported platforms when using [`quinn_udp`](udp) for I/O, which is the default.
753 pub fn local_ip(&self) -> Option<IpAddr> {
754 self.0.state.lock("local_ip").inner.local_ip()
755 }
756
757 /// Current best estimate of this connection's latency (round-trip-time)
758 pub fn rtt(&self, path_id: PathId) -> Option<Duration> {
759 self.0.state.lock("rtt").inner.rtt(path_id)
760 }
761
762 /// Returns connection statistics
763 pub fn stats(&self) -> ConnectionStats {
764 self.0.state.lock("stats").inner.stats()
765 }
766
767 /// Returns path statistics
768 pub fn path_stats(&self, path_id: PathId) -> Option<PathStats> {
769 self.0.state.lock("path_stats").inner.path_stats(path_id)
770 }
771
772 /// Current state of the congestion control algorithm, for debugging purposes
773 pub fn congestion_state(&self, path_id: PathId) -> Option<Box<dyn Controller>> {
774 self.0
775 .state
776 .lock("congestion_state")
777 .inner
778 .congestion_state(path_id)
779 .map(|c| c.clone_box())
780 }
781
782 /// Parameters negotiated during the handshake
783 ///
784 /// Guaranteed to return `Some` on fully established connections or after
785 /// [`Connecting::handshake_data()`] succeeds. See that method's documentations for details on
786 /// the returned value.
787 ///
788 /// [`Connection::handshake_data()`]: crate::Connecting::handshake_data
789 pub fn handshake_data(&self) -> Option<Box<dyn Any>> {
790 self.0
791 .state
792 .lock("handshake_data")
793 .inner
794 .crypto_session()
795 .handshake_data()
796 }
797
798 /// Cryptographic identity of the peer
799 ///
800 /// The dynamic type returned is determined by the configured
801 /// [`Session`](proto::crypto::Session). For the default `rustls` session, the return value can
802 /// be [`downcast`](Box::downcast) to a <code>Vec<[rustls::pki_types::CertificateDer]></code>
803 pub fn peer_identity(&self) -> Option<Box<dyn Any>> {
804 self.0
805 .state
806 .lock("peer_identity")
807 .inner
808 .crypto_session()
809 .peer_identity()
810 }
811
812 /// A stable identifier for this connection
813 ///
814 /// Peer addresses and connection IDs can change, but this value will remain
815 /// fixed for the lifetime of the connection.
816 pub fn stable_id(&self) -> usize {
817 self.0.stable_id()
818 }
819
820 /// Update traffic keys spontaneously
821 ///
822 /// This primarily exists for testing purposes.
823 pub fn force_key_update(&self) {
824 self.0
825 .state
826 .lock("force_key_update")
827 .inner
828 .force_key_update()
829 }
830
831 /// Derive keying material from this connection's TLS session secrets.
832 ///
833 /// When both peers call this method with the same `label` and `context`
834 /// arguments and `output` buffers of equal length, they will get the
835 /// same sequence of bytes in `output`. These bytes are cryptographically
836 /// strong and pseudorandom, and are suitable for use as keying material.
837 ///
838 /// See [RFC5705](https://tools.ietf.org/html/rfc5705) for more information.
839 pub fn export_keying_material(
840 &self,
841 output: &mut [u8],
842 label: &[u8],
843 context: &[u8],
844 ) -> Result<(), proto::crypto::ExportKeyingMaterialError> {
845 self.0
846 .state
847 .lock("export_keying_material")
848 .inner
849 .crypto_session()
850 .export_keying_material(output, label, context)
851 }
852
853 /// Modify the number of remotely initiated unidirectional streams that may be concurrently open
854 ///
855 /// No streams may be opened by the peer unless fewer than `count` are already open. Large
856 /// `count`s increase both minimum and worst-case memory consumption.
857 pub fn set_max_concurrent_uni_streams(&self, count: VarInt) {
858 let mut conn = self.0.state.lock("set_max_concurrent_uni_streams");
859 conn.inner.set_max_concurrent_streams(Dir::Uni, count);
860 // May need to send MAX_STREAMS to make progress
861 conn.wake();
862 }
863
864 /// See [`proto::TransportConfig::send_window()`]
865 pub fn set_send_window(&self, send_window: u64) {
866 let mut conn = self.0.state.lock("set_send_window");
867 conn.inner.set_send_window(send_window);
868 conn.wake();
869 }
870
871 /// See [`proto::TransportConfig::receive_window()`]
872 pub fn set_receive_window(&self, receive_window: VarInt) {
873 let mut conn = self.0.state.lock("set_receive_window");
874 conn.inner.set_receive_window(receive_window);
875 conn.wake();
876 }
877
878 /// Modify the number of remotely initiated bidirectional streams that may be concurrently open
879 ///
880 /// No streams may be opened by the peer unless fewer than `count` are already open. Large
881 /// `count`s increase both minimum and worst-case memory consumption.
882 pub fn set_max_concurrent_bi_streams(&self, count: VarInt) {
883 let mut conn = self.0.state.lock("set_max_concurrent_bi_streams");
884 conn.inner.set_max_concurrent_streams(Dir::Bi, count);
885 // May need to send MAX_STREAMS to make progress
886 conn.wake();
887 }
888
889 /// Track changed on our external address as reported by the peer.
890 pub fn observed_external_addr(&self) -> watch::Receiver<Option<SocketAddr>> {
891 let conn = self.0.state.lock("external_addr");
892 conn.observed_external_addr.subscribe()
893 }
894
895 /// Is multipath enabled?
896 // TODO(flub): not a useful API, once we do real things with multipath we can remove
897 // this again.
898 pub fn is_multipath_enabled(&self) -> bool {
899 let conn = self.0.state.lock("is_multipath_enabled");
900 conn.inner.is_multipath_negotiated()
901 }
902
903 /// Registers one address at which this endpoint might be reachable
904 ///
905 /// When the NAT traversal extension is negotiated, servers send these addresses to clients in
906 /// `ADD_ADDRESS` frames. This allows clients to obtain server address candidates to initiate
907 /// NAT traversal attempts. Clients provide their own reachable addresses in `REACH_OUT` frames
908 /// when [`Self::initiate_nat_traversal_round`] is called.
909 pub fn add_nat_traversal_address(&self, address: SocketAddr) -> Result<(), iroh_hp::Error> {
910 let mut conn = self.0.state.lock("add_nat_traversal_addresses");
911 conn.inner.add_nat_traversal_address(address)
912 }
913
914 /// Removes one or more addresses from the set of addresses at which this endpoint is reachable
915 ///
916 /// When the NAT traversal extension is negotiated, servers send address removals to
917 /// clients in `REMOVE_ADDRESS` frames. This allows clients to stop using outdated
918 /// server address candidates that are no longer valid for NAT traversal.
919 ///
920 /// For clients, removed addresses will no longer be advertised in `REACH_OUT` frames.
921 ///
922 /// Addresses not present in the set will be silently ignored.
923 pub fn remove_nat_traversal_address(&self, address: SocketAddr) -> Result<(), iroh_hp::Error> {
924 let mut conn = self.0.state.lock("remove_nat_traversal_addresses");
925 conn.inner.remove_nat_traversal_address(address)
926 }
927
928 /// Get the current local nat traversal addresses
929 pub fn get_local_nat_traversal_addresses(&self) -> Result<Vec<SocketAddr>, iroh_hp::Error> {
930 let conn = self.0.state.lock("get_local_nat_traversal_addresses");
931 conn.inner.get_local_nat_traversal_addresses()
932 }
933
934 /// Get the currently advertised nat traversal addresses by the server
935 pub fn get_remote_nat_traversal_addresses(&self) -> Result<Vec<SocketAddr>, iroh_hp::Error> {
936 let conn = self.0.state.lock("get_remote_nat_traversal_addresses");
937 conn.inner.get_remote_nat_traversal_addresses()
938 }
939
940 /// Initiates a new nat traversal round
941 ///
942 /// A nat traversal round involves advertising the client's local addresses in `REACH_OUT`
943 /// frames, and initiating probing of the known remote addresses. When a new round is
944 /// initiated, the previous one is cancelled, and paths that have not been opened are closed.
945 ///
946 /// Returns the server addresses that are now being probed.
947 pub fn initiate_nat_traversal_round<F>(
948 &self,
949 rtt_hints: F,
950 ) -> Result<Vec<SocketAddr>, iroh_hp::Error>
951 where
952 F: Fn(&SocketAddr) -> Option<Duration>,
953 {
954 let mut conn = self.0.state.lock("initiate_nat_traversal_round");
955 let now = conn.runtime.now();
956 conn.inner.initiate_nat_traversal_round(now, rtt_hints)
957 }
958}
959
960pin_project! {
961 /// Future produced by [`Connection::open_uni`]
962 pub struct OpenUni<'a> {
963 conn: &'a ConnectionRef,
964 #[pin]
965 notify: Notified<'a>,
966 }
967}
968
969impl Future for OpenUni<'_> {
970 type Output = Result<SendStream, ConnectionError>;
971 fn poll(self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Self::Output> {
972 let this = self.project();
973 let (conn, id, is_0rtt) = ready!(poll_open(ctx, this.conn, this.notify, Dir::Uni))?;
974 Poll::Ready(Ok(SendStream::new(conn, id, is_0rtt)))
975 }
976}
977
978pin_project! {
979 /// Future produced by [`Connection::open_bi`]
980 pub struct OpenBi<'a> {
981 conn: &'a ConnectionRef,
982 #[pin]
983 notify: Notified<'a>,
984 }
985}
986
987impl Future for OpenBi<'_> {
988 type Output = Result<(SendStream, RecvStream), ConnectionError>;
989 fn poll(self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Self::Output> {
990 let this = self.project();
991 let (conn, id, is_0rtt) = ready!(poll_open(ctx, this.conn, this.notify, Dir::Bi))?;
992
993 Poll::Ready(Ok((
994 SendStream::new(conn.clone(), id, is_0rtt),
995 RecvStream::new(conn, id, is_0rtt),
996 )))
997 }
998}
999
1000fn poll_open<'a>(
1001 ctx: &mut Context<'_>,
1002 conn: &'a ConnectionRef,
1003 mut notify: Pin<&mut Notified<'a>>,
1004 dir: Dir,
1005) -> Poll<Result<(ConnectionRef, StreamId, bool), ConnectionError>> {
1006 let mut state = conn.state.lock("poll_open");
1007 if let Some(ref e) = state.error {
1008 return Poll::Ready(Err(e.clone()));
1009 } else if let Some(id) = state.inner.streams().open(dir) {
1010 let is_0rtt = state.inner.side().is_client() && state.inner.is_handshaking();
1011 drop(state); // Release the lock so clone can take it
1012 return Poll::Ready(Ok((conn.clone(), id, is_0rtt)));
1013 }
1014 loop {
1015 match notify.as_mut().poll(ctx) {
1016 // `state` lock ensures we didn't race with readiness
1017 Poll::Pending => return Poll::Pending,
1018 // Spurious wakeup, get a new future
1019 Poll::Ready(()) => {
1020 notify.set(conn.shared.stream_budget_available[dir as usize].notified())
1021 }
1022 }
1023 }
1024}
1025
1026pin_project! {
1027 /// Future produced by [`Connection::accept_uni`]
1028 pub struct AcceptUni<'a> {
1029 conn: &'a ConnectionRef,
1030 #[pin]
1031 notify: Notified<'a>,
1032 }
1033}
1034
1035impl Future for AcceptUni<'_> {
1036 type Output = Result<RecvStream, ConnectionError>;
1037
1038 fn poll(self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Self::Output> {
1039 let this = self.project();
1040 let (conn, id, is_0rtt) = ready!(poll_accept(ctx, this.conn, this.notify, Dir::Uni))?;
1041 Poll::Ready(Ok(RecvStream::new(conn, id, is_0rtt)))
1042 }
1043}
1044
1045pin_project! {
1046 /// Future produced by [`Connection::accept_bi`]
1047 pub struct AcceptBi<'a> {
1048 conn: &'a ConnectionRef,
1049 #[pin]
1050 notify: Notified<'a>,
1051 }
1052}
1053
1054impl Future for AcceptBi<'_> {
1055 type Output = Result<(SendStream, RecvStream), ConnectionError>;
1056
1057 fn poll(self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Self::Output> {
1058 let this = self.project();
1059 let (conn, id, is_0rtt) = ready!(poll_accept(ctx, this.conn, this.notify, Dir::Bi))?;
1060 Poll::Ready(Ok((
1061 SendStream::new(conn.clone(), id, is_0rtt),
1062 RecvStream::new(conn, id, is_0rtt),
1063 )))
1064 }
1065}
1066
1067fn poll_accept<'a>(
1068 ctx: &mut Context<'_>,
1069 conn: &'a ConnectionRef,
1070 mut notify: Pin<&mut Notified<'a>>,
1071 dir: Dir,
1072) -> Poll<Result<(ConnectionRef, StreamId, bool), ConnectionError>> {
1073 let mut state = conn.state.lock("poll_accept");
1074 // Check for incoming streams before checking `state.error` so that already-received streams,
1075 // which are necessarily finite, can be drained from a closed connection.
1076 if let Some(id) = state.inner.streams().accept(dir) {
1077 let is_0rtt = state.inner.is_handshaking();
1078 state.wake(); // To send additional stream ID credit
1079 drop(state); // Release the lock so clone can take it
1080 return Poll::Ready(Ok((conn.clone(), id, is_0rtt)));
1081 } else if let Some(ref e) = state.error {
1082 return Poll::Ready(Err(e.clone()));
1083 }
1084 loop {
1085 match notify.as_mut().poll(ctx) {
1086 // `state` lock ensures we didn't race with readiness
1087 Poll::Pending => return Poll::Pending,
1088 // Spurious wakeup, get a new future
1089 Poll::Ready(()) => notify.set(conn.shared.stream_incoming[dir as usize].notified()),
1090 }
1091 }
1092}
1093
1094pin_project! {
1095 /// Future produced by [`Connection::read_datagram`]
1096 pub struct ReadDatagram<'a> {
1097 conn: &'a ConnectionRef,
1098 #[pin]
1099 notify: Notified<'a>,
1100 }
1101}
1102
1103impl Future for ReadDatagram<'_> {
1104 type Output = Result<Bytes, ConnectionError>;
1105 fn poll(self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Self::Output> {
1106 let mut this = self.project();
1107 let mut state = this.conn.state.lock("ReadDatagram::poll");
1108 // Check for buffered datagrams before checking `state.error` so that already-received
1109 // datagrams, which are necessarily finite, can be drained from a closed connection.
1110 if let Some(x) = state.inner.datagrams().recv() {
1111 return Poll::Ready(Ok(x));
1112 } else if let Some(ref e) = state.error {
1113 return Poll::Ready(Err(e.clone()));
1114 }
1115 loop {
1116 match this.notify.as_mut().poll(ctx) {
1117 // `state` lock ensures we didn't race with readiness
1118 Poll::Pending => return Poll::Pending,
1119 // Spurious wakeup, get a new future
1120 Poll::Ready(()) => this
1121 .notify
1122 .set(this.conn.shared.datagram_received.notified()),
1123 }
1124 }
1125 }
1126}
1127
1128pin_project! {
1129 /// Future produced by [`Connection::send_datagram_wait`]
1130 pub struct SendDatagram<'a> {
1131 conn: &'a ConnectionRef,
1132 data: Option<Bytes>,
1133 #[pin]
1134 notify: Notified<'a>,
1135 }
1136}
1137
1138impl Future for SendDatagram<'_> {
1139 type Output = Result<(), SendDatagramError>;
1140 fn poll(self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Self::Output> {
1141 let mut this = self.project();
1142 let mut state = this.conn.state.lock("SendDatagram::poll");
1143 if let Some(ref e) = state.error {
1144 return Poll::Ready(Err(SendDatagramError::ConnectionLost(e.clone())));
1145 }
1146 use proto::SendDatagramError::*;
1147 match state
1148 .inner
1149 .datagrams()
1150 .send(this.data.take().unwrap(), false)
1151 {
1152 Ok(()) => {
1153 state.wake();
1154 Poll::Ready(Ok(()))
1155 }
1156 Err(e) => Poll::Ready(Err(match e {
1157 Blocked(data) => {
1158 this.data.replace(data);
1159 loop {
1160 match this.notify.as_mut().poll(ctx) {
1161 Poll::Pending => return Poll::Pending,
1162 // Spurious wakeup, get a new future
1163 Poll::Ready(()) => this
1164 .notify
1165 .set(this.conn.shared.datagrams_unblocked.notified()),
1166 }
1167 }
1168 }
1169 UnsupportedByPeer => SendDatagramError::UnsupportedByPeer,
1170 Disabled => SendDatagramError::Disabled,
1171 TooLarge => SendDatagramError::TooLarge,
1172 })),
1173 }
1174 }
1175}
1176
1177/// Future returned by [`Connection::on_closed`]
1178///
1179/// Resolves to a tuple of ([`ConnectionError`], [`ConnectionStats`]).
1180pub struct OnClosed {
1181 rx: oneshot::Receiver<(ConnectionError, ConnectionStats)>,
1182 conn: WeakConnectionHandle,
1183}
1184
1185impl Drop for OnClosed {
1186 fn drop(&mut self) {
1187 if self.rx.is_terminated() {
1188 return;
1189 };
1190 if let Some(conn) = self.conn.upgrade() {
1191 self.rx.close();
1192 conn.0
1193 .state
1194 .lock("OnClosed::drop")
1195 .on_closed
1196 .retain(|tx| !tx.is_closed());
1197 }
1198 }
1199}
1200
1201impl Future for OnClosed {
1202 type Output = (ConnectionError, ConnectionStats);
1203
1204 fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
1205 let this = self.get_mut();
1206 // The `expect` is safe because `State::drop` ensures that all senders are triggered
1207 // before being dropped.
1208 Pin::new(&mut this.rx)
1209 .poll(cx)
1210 .map(|x| x.expect("on_close sender is never dropped before sending"))
1211 }
1212}
1213
1214#[derive(Debug)]
1215pub(crate) struct ConnectionRef(Arc<ConnectionInner>);
1216
1217impl ConnectionRef {
1218 fn from_arc(inner: Arc<ConnectionInner>) -> Self {
1219 inner.state.lock("from_arc").ref_count += 1;
1220 Self(inner)
1221 }
1222
1223 fn stable_id(&self) -> usize {
1224 &*self.0 as *const _ as usize
1225 }
1226}
1227
1228impl Clone for ConnectionRef {
1229 fn clone(&self) -> Self {
1230 Self::from_arc(Arc::clone(&self.0))
1231 }
1232}
1233
1234impl Drop for ConnectionRef {
1235 fn drop(&mut self) {
1236 let conn = &mut *self.state.lock("drop");
1237 if let Some(x) = conn.ref_count.checked_sub(1) {
1238 conn.ref_count = x;
1239 if x == 0 && !conn.inner.is_closed() {
1240 // If the driver is alive, it's just it and us, so we'd better shut it down. If it's
1241 // not, we can't do any harm. If there were any streams being opened, then either
1242 // the connection will be closed for an unrelated reason or a fresh reference will
1243 // be constructed for the newly opened stream.
1244 conn.implicit_close(&self.shared);
1245 }
1246 }
1247 }
1248}
1249
1250impl std::ops::Deref for ConnectionRef {
1251 type Target = ConnectionInner;
1252 fn deref(&self) -> &Self::Target {
1253 &self.0
1254 }
1255}
1256
1257#[derive(Debug)]
1258pub(crate) struct ConnectionInner {
1259 pub(crate) state: Mutex<State>,
1260 pub(crate) shared: Shared,
1261}
1262
1263/// A handle to some connection internals, use with care.
1264///
1265/// This contains a weak reference to the connection so will not itself keep the connection
1266/// alive.
1267#[derive(Debug, Clone)]
1268pub struct WeakConnectionHandle(Weak<ConnectionInner>);
1269
1270impl WeakConnectionHandle {
1271 /// Returns `true` if the [`Connection`] associated with this handle is still alive.
1272 pub fn is_alive(&self) -> bool {
1273 self.0.upgrade().is_some()
1274 }
1275
1276 /// Upgrade the handle to a full `Connection`
1277 pub fn upgrade(&self) -> Option<Connection> {
1278 self.0
1279 .upgrade()
1280 .map(|inner| Connection(ConnectionRef::from_arc(inner)))
1281 }
1282}
1283
1284#[derive(Debug, Default)]
1285pub(crate) struct Shared {
1286 handshake_confirmed: Notify,
1287 /// Notified when new streams may be locally initiated due to an increase in stream ID flow
1288 /// control budget
1289 stream_budget_available: [Notify; 2],
1290 /// Notified when the peer has initiated a new stream
1291 stream_incoming: [Notify; 2],
1292 datagram_received: Notify,
1293 datagrams_unblocked: Notify,
1294 closed: Notify,
1295}
1296
1297pub(crate) struct State {
1298 pub(crate) inner: proto::Connection,
1299 driver: Option<Waker>,
1300 handle: ConnectionHandle,
1301 on_handshake_data: Option<oneshot::Sender<()>>,
1302 on_connected: Option<oneshot::Sender<bool>>,
1303 connected: bool,
1304 handshake_confirmed: bool,
1305 timer: Option<Pin<Box<dyn AsyncTimer>>>,
1306 timer_deadline: Option<Instant>,
1307 conn_events: mpsc::UnboundedReceiver<ConnectionEvent>,
1308 endpoint_events: mpsc::UnboundedSender<(ConnectionHandle, EndpointEvent)>,
1309 pub(crate) blocked_writers: FxHashMap<StreamId, Waker>,
1310 pub(crate) blocked_readers: FxHashMap<StreamId, Waker>,
1311 pub(crate) stopped: FxHashMap<StreamId, Arc<Notify>>,
1312 /// Always set to Some before the connection becomes drained
1313 pub(crate) error: Option<ConnectionError>,
1314 /// Tracks paths being opened
1315 open_path: FxHashMap<PathId, watch::Sender<Result<(), PathError>>>,
1316 /// Tracks paths being closed
1317 pub(crate) close_path: FxHashMap<PathId, oneshot::Sender<VarInt>>,
1318 pub(crate) path_events: tokio::sync::broadcast::Sender<PathEvent>,
1319 /// Number of live handles that can be used to initiate or handle I/O; excludes the driver
1320 ref_count: usize,
1321 sender: Pin<Box<dyn UdpSender>>,
1322 pub(crate) runtime: Arc<dyn Runtime>,
1323 send_buffer: Vec<u8>,
1324 /// We buffer a transmit when the underlying I/O would block
1325 buffered_transmit: Option<proto::Transmit>,
1326 /// Our last external address reported by the peer. When multipath is enabled, this will be the
1327 /// last report across all paths.
1328 pub(crate) observed_external_addr: watch::Sender<Option<SocketAddr>>,
1329 pub(crate) nat_traversal_updates: tokio::sync::broadcast::Sender<iroh_hp::Event>,
1330 on_closed: Vec<oneshot::Sender<(ConnectionError, ConnectionStats)>>,
1331}
1332
1333impl State {
1334 #[allow(clippy::too_many_arguments)]
1335 fn new(
1336 inner: proto::Connection,
1337 handle: ConnectionHandle,
1338 endpoint_events: mpsc::UnboundedSender<(ConnectionHandle, EndpointEvent)>,
1339 conn_events: mpsc::UnboundedReceiver<ConnectionEvent>,
1340 on_handshake_data: oneshot::Sender<()>,
1341 on_connected: oneshot::Sender<bool>,
1342 sender: Pin<Box<dyn UdpSender>>,
1343 runtime: Arc<dyn Runtime>,
1344 ) -> Self {
1345 Self {
1346 inner,
1347 driver: None,
1348 handle,
1349 on_handshake_data: Some(on_handshake_data),
1350 on_connected: Some(on_connected),
1351 connected: false,
1352 handshake_confirmed: false,
1353 timer: None,
1354 timer_deadline: None,
1355 conn_events,
1356 endpoint_events,
1357 blocked_writers: FxHashMap::default(),
1358 blocked_readers: FxHashMap::default(),
1359 stopped: FxHashMap::default(),
1360 open_path: FxHashMap::default(),
1361 close_path: FxHashMap::default(),
1362 error: None,
1363 ref_count: 0,
1364 sender,
1365 runtime,
1366 send_buffer: Vec::new(),
1367 buffered_transmit: None,
1368 path_events: tokio::sync::broadcast::channel(32).0,
1369 observed_external_addr: watch::Sender::new(None),
1370 nat_traversal_updates: tokio::sync::broadcast::channel(32).0,
1371 on_closed: Vec::new(),
1372 }
1373 }
1374
1375 fn drive_transmit(&mut self, cx: &mut Context) -> io::Result<bool> {
1376 let now = self.runtime.now();
1377 let mut transmits = 0;
1378
1379 let max_datagrams = self
1380 .sender
1381 .max_transmit_segments()
1382 .min(MAX_TRANSMIT_SEGMENTS);
1383
1384 loop {
1385 // Retry the last transmit, or get a new one.
1386 let t = match self.buffered_transmit.take() {
1387 Some(t) => t,
1388 None => {
1389 self.send_buffer.clear();
1390 match self
1391 .inner
1392 .poll_transmit(now, max_datagrams, &mut self.send_buffer)
1393 {
1394 Some(t) => {
1395 transmits += match t.segment_size {
1396 None => 1,
1397 Some(s) => t.size.div_ceil(s), // round up
1398 };
1399 t
1400 }
1401 None => break,
1402 }
1403 }
1404 };
1405
1406 let len = t.size;
1407 match self
1408 .sender
1409 .as_mut()
1410 .poll_send(&udp_transmit(&t, &self.send_buffer[..len]), cx)
1411 {
1412 Poll::Pending => {
1413 self.buffered_transmit = Some(t);
1414 return Ok(false);
1415 }
1416 Poll::Ready(Err(e)) => return Err(e),
1417 Poll::Ready(Ok(())) => {}
1418 }
1419
1420 if transmits >= MAX_TRANSMIT_DATAGRAMS {
1421 // TODO: What isn't ideal here yet is that if we don't poll all
1422 // datagrams that could be sent we don't go into the `app_limited`
1423 // state and CWND continues to grow until we get here the next time.
1424 // See https://github.com/quinn-rs/quinn/issues/1126
1425 return Ok(true);
1426 }
1427 }
1428
1429 Ok(false)
1430 }
1431
1432 fn forward_endpoint_events(&mut self) {
1433 while let Some(event) = self.inner.poll_endpoint_events() {
1434 // If the endpoint driver is gone, noop.
1435 let _ = self.endpoint_events.send((self.handle, event));
1436 }
1437 }
1438
1439 /// If this returns `Err`, the endpoint is dead, so the driver should exit immediately.
1440 fn process_conn_events(
1441 &mut self,
1442 shared: &Shared,
1443 cx: &mut Context,
1444 ) -> Result<(), ConnectionError> {
1445 loop {
1446 match self.conn_events.poll_recv(cx) {
1447 Poll::Ready(Some(ConnectionEvent::Rebind(sender))) => {
1448 self.sender = sender;
1449 self.inner.local_address_changed();
1450 }
1451 Poll::Ready(Some(ConnectionEvent::Proto(event))) => {
1452 self.inner.handle_event(event);
1453 }
1454 Poll::Ready(Some(ConnectionEvent::Close { reason, error_code })) => {
1455 self.close(error_code, reason, shared);
1456 }
1457 Poll::Ready(None) => {
1458 return Err(ConnectionError::TransportError(TransportError::new(
1459 TransportErrorCode::INTERNAL_ERROR,
1460 "endpoint driver future was dropped".to_string(),
1461 )));
1462 }
1463 Poll::Pending => {
1464 return Ok(());
1465 }
1466 }
1467 }
1468 }
1469
1470 fn forward_app_events(&mut self, shared: &Shared) {
1471 while let Some(event) = self.inner.poll() {
1472 use proto::Event::*;
1473 match event {
1474 HandshakeDataReady => {
1475 if let Some(x) = self.on_handshake_data.take() {
1476 let _ = x.send(());
1477 }
1478 }
1479 Connected => {
1480 self.connected = true;
1481 if let Some(x) = self.on_connected.take() {
1482 // We don't care if the on-connected future was dropped
1483 let _ = x.send(self.inner.accepted_0rtt());
1484 }
1485 if self.inner.side().is_client() && !self.inner.accepted_0rtt() {
1486 // Wake up rejected 0-RTT streams so they can fail immediately with
1487 // `ZeroRttRejected` errors.
1488 wake_all(&mut self.blocked_writers);
1489 wake_all(&mut self.blocked_readers);
1490 wake_all_notify(&mut self.stopped);
1491 }
1492 }
1493 HandshakeConfirmed => {
1494 self.handshake_confirmed = true;
1495 shared.handshake_confirmed.notify_waiters();
1496 }
1497 ConnectionLost { reason } => {
1498 self.terminate(reason, shared);
1499 }
1500 Stream(StreamEvent::Writable { id }) => wake_stream(id, &mut self.blocked_writers),
1501 Stream(StreamEvent::Opened { dir: Dir::Uni }) => {
1502 shared.stream_incoming[Dir::Uni as usize].notify_waiters();
1503 }
1504 Stream(StreamEvent::Opened { dir: Dir::Bi }) => {
1505 shared.stream_incoming[Dir::Bi as usize].notify_waiters();
1506 }
1507 DatagramReceived => {
1508 shared.datagram_received.notify_waiters();
1509 }
1510 DatagramsUnblocked => {
1511 shared.datagrams_unblocked.notify_waiters();
1512 }
1513 Stream(StreamEvent::Readable { id }) => wake_stream(id, &mut self.blocked_readers),
1514 Stream(StreamEvent::Available { dir }) => {
1515 // Might mean any number of streams are ready, so we wake up everyone
1516 shared.stream_budget_available[dir as usize].notify_waiters();
1517 }
1518 Stream(StreamEvent::Finished { id }) => wake_stream_notify(id, &mut self.stopped),
1519 Stream(StreamEvent::Stopped { id, .. }) => {
1520 wake_stream_notify(id, &mut self.stopped);
1521 wake_stream(id, &mut self.blocked_writers);
1522 }
1523 Path(ref evt @ PathEvent::ObservedAddr { addr: observed, .. }) => {
1524 self.path_events.send(evt.clone()).ok();
1525 self.observed_external_addr.send_if_modified(|addr| {
1526 let old = addr.replace(observed);
1527 old != *addr
1528 });
1529 }
1530 Path(ref evt @ PathEvent::Opened { id }) => {
1531 self.path_events.send(evt.clone()).ok();
1532 if let Some(sender) = self.open_path.remove(&id) {
1533 sender.send_modify(|value| *value = Ok(()));
1534 }
1535 }
1536 Path(ref evt @ PathEvent::Closed { id, error_code }) => {
1537 self.path_events.send(evt.clone()).ok();
1538 if let Some(sender) = self.close_path.remove(&id) {
1539 let _ = sender.send(error_code);
1540 }
1541 }
1542 Path(evt @ PathEvent::Abandoned { .. }) => {
1543 self.path_events.send(evt).ok();
1544 }
1545 Path(ref evt @ PathEvent::LocallyClosed { id, error }) => {
1546 self.path_events.send(evt.clone()).ok();
1547 if let Some(sender) = self.open_path.remove(&id) {
1548 sender.send_modify(|value| *value = Err(error));
1549 }
1550 // this will happen also for already opened paths
1551 }
1552 Path(evt @ PathEvent::RemoteStatus { .. }) => {
1553 self.path_events.send(evt).ok();
1554 }
1555 NatTraversal(update) => {
1556 self.nat_traversal_updates.send(update).ok();
1557 }
1558 }
1559 }
1560 }
1561
1562 fn drive_timer(&mut self, cx: &mut Context) -> bool {
1563 // Check whether we need to (re)set the timer. If so, we must poll again to ensure the
1564 // timer is registered with the runtime (and check whether it's already
1565 // expired).
1566 match self.inner.poll_timeout() {
1567 Some(deadline) => {
1568 if let Some(delay) = &mut self.timer {
1569 // There is no need to reset the tokio timer if the deadline
1570 // did not change
1571 if self
1572 .timer_deadline
1573 .map(|current_deadline| current_deadline != deadline)
1574 .unwrap_or(true)
1575 {
1576 delay.as_mut().reset(deadline);
1577 }
1578 } else {
1579 self.timer = Some(self.runtime.new_timer(deadline));
1580 }
1581 // Store the actual expiration time of the timer
1582 self.timer_deadline = Some(deadline);
1583 }
1584 None => {
1585 self.timer_deadline = None;
1586 return false;
1587 }
1588 }
1589
1590 if self.timer_deadline.is_none() {
1591 return false;
1592 }
1593
1594 let delay = self
1595 .timer
1596 .as_mut()
1597 .expect("timer must exist in this state")
1598 .as_mut();
1599 if delay.poll(cx).is_pending() {
1600 // Since there wasn't a timeout event, there is nothing new
1601 // for the connection to do
1602 return false;
1603 }
1604
1605 // A timer expired, so the caller needs to check for
1606 // new transmits, which might cause new timers to be set.
1607 self.inner.handle_timeout(self.runtime.now());
1608 self.timer_deadline = None;
1609 true
1610 }
1611
1612 /// Wake up a blocked `Driver` task to process I/O
1613 pub(crate) fn wake(&mut self) {
1614 if let Some(x) = self.driver.take() {
1615 x.wake();
1616 }
1617 }
1618
1619 /// Used to wake up all blocked futures when the connection becomes closed for any reason
1620 fn terminate(&mut self, reason: ConnectionError, shared: &Shared) {
1621 self.error = Some(reason.clone());
1622 if let Some(x) = self.on_handshake_data.take() {
1623 let _ = x.send(());
1624 }
1625 wake_all(&mut self.blocked_writers);
1626 wake_all(&mut self.blocked_readers);
1627 shared.stream_budget_available[Dir::Uni as usize].notify_waiters();
1628 shared.stream_budget_available[Dir::Bi as usize].notify_waiters();
1629 shared.stream_incoming[Dir::Uni as usize].notify_waiters();
1630 shared.stream_incoming[Dir::Bi as usize].notify_waiters();
1631 shared.datagram_received.notify_waiters();
1632 shared.datagrams_unblocked.notify_waiters();
1633 if let Some(x) = self.on_connected.take() {
1634 let _ = x.send(false);
1635 }
1636 shared.handshake_confirmed.notify_waiters();
1637 wake_all_notify(&mut self.stopped);
1638 shared.closed.notify_waiters();
1639
1640 // Send to the registered on_closed futures.
1641 let stats = self.inner.stats();
1642 for tx in self.on_closed.drain(..) {
1643 tx.send((reason.clone(), stats.clone())).ok();
1644 }
1645 }
1646
1647 fn close(&mut self, error_code: VarInt, reason: Bytes, shared: &Shared) {
1648 self.inner.close(self.runtime.now(), error_code, reason);
1649 self.terminate(ConnectionError::LocallyClosed, shared);
1650 self.wake();
1651 }
1652
1653 /// Close for a reason other than the application's explicit request
1654 pub(crate) fn implicit_close(&mut self, shared: &Shared) {
1655 self.close(0u32.into(), Bytes::new(), shared);
1656 }
1657
1658 pub(crate) fn check_0rtt(&self) -> Result<(), ()> {
1659 if self.inner.is_handshaking()
1660 || self.inner.accepted_0rtt()
1661 || self.inner.side().is_server()
1662 {
1663 Ok(())
1664 } else {
1665 Err(())
1666 }
1667 }
1668}
1669
1670impl Drop for State {
1671 fn drop(&mut self) {
1672 if !self.inner.is_drained() {
1673 // Ensure the endpoint can tidy up
1674 let _ = self
1675 .endpoint_events
1676 .send((self.handle, proto::EndpointEvent::drained()));
1677 }
1678
1679 if !self.on_closed.is_empty() {
1680 // Ensure that all on_closed oneshot senders are triggered before dropping.
1681 let reason = self.error.as_ref().expect("closed without error reason");
1682 let stats = self.inner.stats();
1683 for tx in self.on_closed.drain(..) {
1684 tx.send((reason.clone(), stats.clone())).ok();
1685 }
1686 }
1687 }
1688}
1689
1690impl fmt::Debug for State {
1691 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1692 f.debug_struct("State").field("inner", &self.inner).finish()
1693 }
1694}
1695
1696fn wake_stream(stream_id: StreamId, wakers: &mut FxHashMap<StreamId, Waker>) {
1697 if let Some(waker) = wakers.remove(&stream_id) {
1698 waker.wake();
1699 }
1700}
1701
1702fn wake_all(wakers: &mut FxHashMap<StreamId, Waker>) {
1703 wakers.drain().for_each(|(_, waker)| waker.wake())
1704}
1705
1706fn wake_stream_notify(stream_id: StreamId, wakers: &mut FxHashMap<StreamId, Arc<Notify>>) {
1707 if let Some(notify) = wakers.remove(&stream_id) {
1708 notify.notify_waiters()
1709 }
1710}
1711
1712fn wake_all_notify(wakers: &mut FxHashMap<StreamId, Arc<Notify>>) {
1713 wakers
1714 .drain()
1715 .for_each(|(_, notify)| notify.notify_waiters())
1716}
1717
1718/// Errors that can arise when sending a datagram
1719#[derive(Debug, Error, Clone, Eq, PartialEq)]
1720pub enum SendDatagramError {
1721 /// The peer does not support receiving datagram frames
1722 #[error("datagrams not supported by peer")]
1723 UnsupportedByPeer,
1724 /// Datagram support is disabled locally
1725 #[error("datagram support disabled")]
1726 Disabled,
1727 /// The datagram is larger than the connection can currently accommodate
1728 ///
1729 /// Indicates that the path MTU minus overhead or the limit advertised by the peer has been
1730 /// exceeded.
1731 #[error("datagram too large")]
1732 TooLarge,
1733 /// The connection was lost
1734 #[error("connection lost")]
1735 ConnectionLost(#[from] ConnectionError),
1736}
1737
1738/// The maximum amount of datagrams which will be produced in a single `drive_transmit` call
1739///
1740/// This limits the amount of CPU resources consumed by datagram generation,
1741/// and allows other tasks (like receiving ACKs) to run in between.
1742const MAX_TRANSMIT_DATAGRAMS: usize = 20;
1743
1744/// The maximum amount of datagrams that are sent in a single transmit
1745///
1746/// This can be lower than the maximum platform capabilities, to avoid excessive
1747/// memory allocations when calling `poll_transmit()`. Benchmarks have shown
1748/// that numbers around 10 are a good compromise.
1749const MAX_TRANSMIT_SEGMENTS: usize = 10;