iroh_quinn/connection.rs
1use std::{
2 any::Any,
3 fmt,
4 future::Future,
5 io,
6 net::{IpAddr, SocketAddr},
7 num::NonZeroUsize,
8 pin::Pin,
9 sync::{Arc, Weak},
10 task::{Context, Poll, Waker, ready},
11};
12
13use bytes::Bytes;
14use pin_project_lite::pin_project;
15use rustc_hash::FxHashMap;
16use thiserror::Error;
17use tokio::sync::{Notify, futures::Notified, mpsc, oneshot, watch};
18use tracing::{Instrument, Span, debug_span};
19
20use crate::{
21 ConnectionEvent, Duration, Instant, Path, VarInt,
22 endpoint::ensure_ipv6,
23 mutex::Mutex,
24 path::OpenPath,
25 recv_stream::RecvStream,
26 runtime::{AsyncTimer, Runtime, UdpSender},
27 send_stream::SendStream,
28 udp_transmit,
29};
30use proto::{
31 ConnectionError, ConnectionHandle, ConnectionStats, Dir, EndpointEvent, PathError, PathEvent,
32 PathId, PathStats, PathStatus, Side, StreamEvent, StreamId, TransportError, TransportErrorCode,
33 congestion::Controller, iroh_hp,
34};
35
36/// In-progress connection attempt future
37#[derive(Debug)]
38pub struct Connecting {
39 conn: Option<ConnectionRef>,
40 connected: oneshot::Receiver<bool>,
41 handshake_data_ready: Option<oneshot::Receiver<()>>,
42}
43
44impl Connecting {
45 pub(crate) fn new(
46 handle: ConnectionHandle,
47 conn: proto::Connection,
48 endpoint_events: mpsc::UnboundedSender<(ConnectionHandle, EndpointEvent)>,
49 conn_events: mpsc::UnboundedReceiver<ConnectionEvent>,
50 sender: Pin<Box<dyn UdpSender>>,
51 runtime: Arc<dyn Runtime>,
52 ) -> Self {
53 let (on_handshake_data_send, on_handshake_data_recv) = oneshot::channel();
54 let (on_connected_send, on_connected_recv) = oneshot::channel();
55
56 let conn = ConnectionRef(Arc::new(ConnectionInner {
57 state: Mutex::new(State::new(
58 conn,
59 handle,
60 endpoint_events,
61 conn_events,
62 on_handshake_data_send,
63 on_connected_send,
64 sender,
65 runtime.clone(),
66 )),
67 shared: Shared::default(),
68 }));
69
70 let driver = ConnectionDriver(conn.clone());
71 runtime.spawn(Box::pin(
72 async {
73 if let Err(e) = driver.await {
74 tracing::error!("I/O error: {e}");
75 }
76 }
77 .instrument(Span::current()),
78 ));
79
80 Self {
81 conn: Some(conn),
82 connected: on_connected_recv,
83 handshake_data_ready: Some(on_handshake_data_recv),
84 }
85 }
86
87 /// Convert into a 0-RTT or 0.5-RTT connection at the cost of weakened security
88 ///
89 /// Returns `Ok` immediately if the local endpoint is able to attempt sending 0/0.5-RTT data.
90 /// If so, the returned [`Connection`] can be used to send application data without waiting for
91 /// the rest of the handshake to complete, at the cost of weakened cryptographic security
92 /// guarantees. The returned [`ZeroRttAccepted`] future resolves when the handshake does
93 /// complete, at which point subsequently opened streams and written data will have full
94 /// cryptographic protection.
95 ///
96 /// ## Outgoing
97 ///
98 /// For outgoing connections, the initial attempt to convert to a [`Connection`] which sends
99 /// 0-RTT data will proceed if the [`crypto::ClientConfig`][crate::crypto::ClientConfig]
100 /// attempts to resume a previous TLS session. However, **the remote endpoint may not actually
101 /// _accept_ the 0-RTT data**--yet still accept the connection attempt in general. This
102 /// possibility is conveyed through the [`ZeroRttAccepted`] future--when the handshake
103 /// completes, it resolves to true if the 0-RTT data was accepted and false if it was rejected.
104 /// If it was rejected, the existence of streams opened and other application data sent prior
105 /// to the handshake completing will not be conveyed to the remote application, and local
106 /// operations on them will return `ZeroRttRejected` errors.
107 ///
108 /// A server may reject 0-RTT data at its discretion, but accepting 0-RTT data requires the
109 /// relevant resumption state to be stored in the server, which servers may limit or lose for
110 /// various reasons including not persisting resumption state across server restarts.
111 ///
112 /// If manually providing a [`crypto::ClientConfig`][crate::crypto::ClientConfig], check your
113 /// implementation's docs for 0-RTT pitfalls.
114 ///
115 /// ## Incoming
116 ///
117 /// For incoming connections, conversion to 0.5-RTT will always fully succeed. `into_0rtt` will
118 /// always return `Ok` and the [`ZeroRttAccepted`] will always resolve to true.
119 ///
120 /// If manually providing a [`crypto::ServerConfig`][crate::crypto::ServerConfig], check your
121 /// implementation's docs for 0-RTT pitfalls.
122 ///
123 /// ## Security
124 ///
125 /// On outgoing connections, this enables transmission of 0-RTT data, which is vulnerable to
126 /// replay attacks, and should therefore never invoke non-idempotent operations.
127 ///
128 /// On incoming connections, this enables transmission of 0.5-RTT data, which may be sent
129 /// before TLS client authentication has occurred, and should therefore not be used to send
130 /// data for which client authentication is being used.
131 pub fn into_0rtt(mut self) -> Result<(Connection, ZeroRttAccepted), Self> {
132 // This lock borrows `self` and would normally be dropped at the end of this scope, so we'll
133 // have to release it explicitly before returning `self` by value.
134 let conn = (self.conn.as_mut().unwrap()).state.lock("into_0rtt");
135
136 let is_ok = conn.inner.has_0rtt() || conn.inner.side().is_server();
137 drop(conn);
138
139 if is_ok {
140 let conn = self.conn.take().unwrap();
141 Ok((Connection(conn), ZeroRttAccepted(self.connected)))
142 } else {
143 Err(self)
144 }
145 }
146
147 /// Parameters negotiated during the handshake
148 ///
149 /// The dynamic type returned is determined by the configured
150 /// [`Session`](proto::crypto::Session). For the default `rustls` session, the return value can
151 /// be [`downcast`](Box::downcast) to a
152 /// [`crypto::rustls::HandshakeData`](crate::crypto::rustls::HandshakeData).
153 pub async fn handshake_data(&mut self) -> Result<Box<dyn Any>, ConnectionError> {
154 // Taking &mut self allows us to use a single oneshot channel rather than dealing with
155 // potentially many tasks waiting on the same event. It's a bit of a hack, but keeps things
156 // simple.
157 if let Some(x) = self.handshake_data_ready.take() {
158 let _ = x.await;
159 }
160 let conn = self.conn.as_ref().unwrap();
161 let inner = conn.state.lock("handshake");
162 inner
163 .inner
164 .crypto_session()
165 .handshake_data()
166 .ok_or_else(|| {
167 inner
168 .error
169 .clone()
170 .expect("spurious handshake data ready notification")
171 })
172 }
173
174 /// The local IP address which was used when the peer established
175 /// the connection
176 ///
177 /// This can be different from the address the endpoint is bound to, in case
178 /// the endpoint is bound to a wildcard address like `0.0.0.0` or `::`.
179 ///
180 /// This will return `None` for clients, or when the platform does not expose this
181 /// information. See [`quinn_udp::RecvMeta::dst_ip`](udp::RecvMeta::dst_ip) for a list of
182 /// supported platforms when using [`quinn_udp`](udp) for I/O, which is the default.
183 ///
184 /// Will panic if called after `poll` has returned `Ready`.
185 pub fn local_ip(&self) -> Option<IpAddr> {
186 let conn = self.conn.as_ref().unwrap();
187 let inner = conn.state.lock("local_ip");
188
189 inner.inner.local_ip()
190 }
191
192 /// The peer's UDP address
193 ///
194 /// Will panic if called after `poll` has returned `Ready`.
195 pub fn remote_address(&self) -> SocketAddr {
196 let conn_ref: &ConnectionRef = self.conn.as_ref().expect("used after yielding Ready");
197 // TODO: another unwrap
198 conn_ref
199 .state
200 .lock("remote_address")
201 .inner
202 .path_remote_address(PathId::ZERO)
203 .expect("path exists when connecting")
204 }
205}
206
207impl Future for Connecting {
208 type Output = Result<Connection, ConnectionError>;
209 fn poll(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
210 Pin::new(&mut self.connected).poll(cx).map(|_| {
211 let conn = self.conn.take().unwrap();
212 let inner = conn.state.lock("connecting");
213 if inner.connected {
214 drop(inner);
215 Ok(Connection(conn))
216 } else {
217 Err(inner
218 .error
219 .clone()
220 .expect("connected signaled without connection success or error"))
221 }
222 })
223 }
224}
225
226/// Future that completes when a connection is fully established
227///
228/// For clients, the resulting value indicates if 0-RTT was accepted. For servers, the resulting
229/// value is meaningless.
230pub struct ZeroRttAccepted(oneshot::Receiver<bool>);
231
232impl Future for ZeroRttAccepted {
233 type Output = bool;
234 fn poll(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
235 Pin::new(&mut self.0).poll(cx).map(|x| x.unwrap_or(false))
236 }
237}
238
239/// A future that drives protocol logic for a connection
240///
241/// This future handles the protocol logic for a single connection, routing events from the
242/// `Connection` API object to the `Endpoint` task and the related stream-related interfaces.
243/// It also keeps track of outstanding timeouts for the `Connection`.
244///
245/// If the connection encounters an error condition, this future will yield an error. It will
246/// terminate (yielding `Ok(())`) if the connection was closed without error. Unlike other
247/// connection-related futures, this waits for the draining period to complete to ensure that
248/// packets still in flight from the peer are handled gracefully.
249#[must_use = "connection drivers must be spawned for their connections to function"]
250#[derive(Debug)]
251struct ConnectionDriver(ConnectionRef);
252
253impl Future for ConnectionDriver {
254 type Output = Result<(), io::Error>;
255
256 fn poll(self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
257 let conn = &mut *self.0.state.lock("poll");
258
259 let span = debug_span!("drive", id = conn.handle.0);
260 let _guard = span.enter();
261
262 if let Err(e) = conn.process_conn_events(&self.0.shared, cx) {
263 conn.terminate(e, &self.0.shared);
264 return Poll::Ready(Ok(()));
265 }
266 let mut keep_going = conn.drive_transmit(cx)?;
267 // If a timer expires, there might be more to transmit. When we transmit something, we
268 // might need to reset a timer. Hence, we must loop until neither happens.
269 keep_going |= conn.drive_timer(cx);
270 conn.forward_endpoint_events();
271 conn.forward_app_events(&self.0.shared);
272
273 if !conn.inner.is_drained() {
274 if keep_going {
275 // If the connection hasn't processed all tasks, schedule it again
276 cx.waker().wake_by_ref();
277 } else {
278 conn.driver = Some(cx.waker().clone());
279 }
280 return Poll::Pending;
281 }
282 if conn.error.is_none() {
283 unreachable!("drained connections always have an error");
284 }
285 Poll::Ready(Ok(()))
286 }
287}
288
289/// A QUIC connection.
290///
291/// If all references to a connection (including every clone of the `Connection` handle, streams of
292/// incoming streams, and the various stream types) have been dropped, then the connection will be
293/// automatically closed with an `error_code` of 0 and an empty `reason`. You can also close the
294/// connection explicitly by calling [`Connection::close()`].
295///
296/// Closing the connection immediately abandons efforts to deliver data to the peer. Upon
297/// receiving CONNECTION_CLOSE the peer *may* drop any stream data not yet delivered to the
298/// application. [`Connection::close()`] describes in more detail how to gracefully close a
299/// connection without losing application data.
300///
301/// May be cloned to obtain another handle to the same connection.
302///
303/// [`Connection::close()`]: Connection::close
304#[derive(Debug, Clone)]
305pub struct Connection(ConnectionRef);
306
307impl Connection {
308 /// Returns a weak reference to the inner connection struct.
309 pub fn weak_handle(&self) -> WeakConnectionHandle {
310 WeakConnectionHandle(Arc::downgrade(&self.0.0))
311 }
312
313 /// Initiate a new outgoing unidirectional stream.
314 ///
315 /// Streams are cheap and instantaneous to open unless blocked by flow control. As a
316 /// consequence, the peer won't be notified that a stream has been opened until the stream is
317 /// actually used.
318 pub fn open_uni(&self) -> OpenUni<'_> {
319 OpenUni {
320 conn: &self.0,
321 notify: self.0.shared.stream_budget_available[Dir::Uni as usize].notified(),
322 }
323 }
324
325 /// Initiate a new outgoing bidirectional stream.
326 ///
327 /// Streams are cheap and instantaneous to open unless blocked by flow control. As a
328 /// consequence, the peer won't be notified that a stream has been opened until the stream is
329 /// actually used. Calling [`open_bi()`] then waiting on the [`RecvStream`] without writing
330 /// anything to [`SendStream`] will never succeed.
331 ///
332 /// [`open_bi()`]: crate::Connection::open_bi
333 /// [`SendStream`]: crate::SendStream
334 /// [`RecvStream`]: crate::RecvStream
335 pub fn open_bi(&self) -> OpenBi<'_> {
336 OpenBi {
337 conn: &self.0,
338 notify: self.0.shared.stream_budget_available[Dir::Bi as usize].notified(),
339 }
340 }
341
342 /// Accept the next incoming uni-directional stream
343 pub fn accept_uni(&self) -> AcceptUni<'_> {
344 AcceptUni {
345 conn: &self.0,
346 notify: self.0.shared.stream_incoming[Dir::Uni as usize].notified(),
347 }
348 }
349
350 /// Accept the next incoming bidirectional stream
351 ///
352 /// **Important Note**: The `Connection` that calls [`open_bi()`] must write to its [`SendStream`]
353 /// before the other `Connection` is able to `accept_bi()`. Calling [`open_bi()`] then
354 /// waiting on the [`RecvStream`] without writing anything to [`SendStream`] will never succeed.
355 ///
356 /// [`accept_bi()`]: crate::Connection::accept_bi
357 /// [`open_bi()`]: crate::Connection::open_bi
358 /// [`SendStream`]: crate::SendStream
359 /// [`RecvStream`]: crate::RecvStream
360 pub fn accept_bi(&self) -> AcceptBi<'_> {
361 AcceptBi {
362 conn: &self.0,
363 notify: self.0.shared.stream_incoming[Dir::Bi as usize].notified(),
364 }
365 }
366
367 /// Receive an application datagram
368 pub fn read_datagram(&self) -> ReadDatagram<'_> {
369 ReadDatagram {
370 conn: &self.0,
371 notify: self.0.shared.datagram_received.notified(),
372 }
373 }
374
375 /// Opens a new path if no path exists yet for the remote address.
376 ///
377 /// Otherwise behaves exactly as [`open_path`].
378 ///
379 /// [`open_path`]: Self::open_path
380 pub fn open_path_ensure(&self, addr: SocketAddr, initial_status: PathStatus) -> OpenPath {
381 let mut state = self.0.state.lock("open_path");
382
383 // If endpoint::State::ipv6 is true we want to keep all our IP addresses as IPv6.
384 // If not, we do not support IPv6. We can not access endpoint::State from here
385 // however, but either all our paths use an IPv6 address, or all our paths use an
386 // IPv4 address. So we can use that information.
387 let ipv6 = state
388 .inner
389 .paths()
390 .iter()
391 .filter_map(|id| {
392 state
393 .inner
394 .path_remote_address(*id)
395 .map(|ip| ip.is_ipv6())
396 .ok()
397 })
398 .next()
399 .unwrap_or_default();
400 if addr.is_ipv6() && !ipv6 {
401 return OpenPath::rejected(PathError::InvalidRemoteAddress(addr));
402 }
403 let addr = if ipv6 {
404 SocketAddr::V6(ensure_ipv6(addr))
405 } else {
406 addr
407 };
408
409 let now = state.runtime.now();
410 let open_res = state.inner.open_path_ensure(addr, initial_status, now);
411 state.wake();
412 match open_res {
413 Ok((path_id, existed)) if existed => {
414 match state.open_path.get(&path_id).map(|tx| tx.subscribe()) {
415 Some(recv) => OpenPath::new(path_id, recv, self.0.clone()),
416 None => OpenPath::ready(path_id, self.0.clone()),
417 }
418 }
419 Ok((path_id, _)) => {
420 let (tx, rx) = watch::channel(Ok(()));
421 state.open_path.insert(path_id, tx);
422 drop(state);
423 OpenPath::new(path_id, rx, self.0.clone())
424 }
425 Err(err) => OpenPath::rejected(err),
426 }
427 }
428
429 /// Opens an additional path if the multipath extension is negotiated.
430 ///
431 /// The returned future completes once the path is either fully opened and ready to
432 /// carry application data, or if there was an error.
433 ///
434 /// Dropping the returned future does not cancel the opening of the path, the
435 /// [`PathEvent::Opened`] event will still be emitted from [`Self::path_events`] if the
436 /// path opens. The [`PathId`] for the events can be extracted from
437 /// [`OpenPath::path_id`].
438 ///
439 /// Failure to open a path can either occur immediately, before polling the returned
440 /// future, or at a later time. If the failure is immediate [`OpenPath::path_id`] will
441 /// return `None` and the future will be ready immediately. If the failure happens
442 /// later, a [`PathEvent`] will be emitted.
443 pub fn open_path(&self, addr: SocketAddr, initial_status: PathStatus) -> OpenPath {
444 let mut state = self.0.state.lock("open_path");
445
446 // If endpoint::State::ipv6 is true we want to keep all our IP addresses as IPv6.
447 // If not, we do not support IPv6. We can not access endpoint::State from here
448 // however, but either all our paths use an IPv6 address, or all our paths use an
449 // IPv4 address. So we can use that information.
450 let ipv6 = state
451 .inner
452 .paths()
453 .iter()
454 .filter_map(|id| {
455 state
456 .inner
457 .path_remote_address(*id)
458 .map(|ip| ip.is_ipv6())
459 .ok()
460 })
461 .next()
462 .unwrap_or_default();
463 if addr.is_ipv6() && !ipv6 {
464 return OpenPath::rejected(PathError::InvalidRemoteAddress(addr));
465 }
466 let addr = if ipv6 {
467 SocketAddr::V6(ensure_ipv6(addr))
468 } else {
469 addr
470 };
471
472 let (on_open_path_send, on_open_path_recv) = watch::channel(Ok(()));
473 let now = state.runtime.now();
474 let open_res = state.inner.open_path(addr, initial_status, now);
475 state.wake();
476 match open_res {
477 Ok(path_id) => {
478 state.open_path.insert(path_id, on_open_path_send);
479 drop(state);
480 OpenPath::new(path_id, on_open_path_recv, self.0.clone())
481 }
482 Err(err) => OpenPath::rejected(err),
483 }
484 }
485
486 /// Returns the [`Path`] structure of an open path
487 pub fn path(&self, id: PathId) -> Option<Path> {
488 // TODO(flub): Using this to know if the path still exists is... hacky.
489 self.0.state.lock("path").inner.path_status(id).ok()?;
490 Some(Path {
491 id,
492 conn: self.0.clone(),
493 })
494 }
495
496 /// A broadcast receiver of [`PathEvent`]s for all paths in this connection
497 pub fn path_events(&self) -> tokio::sync::broadcast::Receiver<PathEvent> {
498 self.0.state.lock("path_events").path_events.subscribe()
499 }
500
501 /// A broadcast receiver of [`iroh_hp::Event`]s for updates about server addresses
502 pub fn nat_traversal_updates(&self) -> tokio::sync::broadcast::Receiver<iroh_hp::Event> {
503 self.0
504 .state
505 .lock("nat_traversal_updates")
506 .nat_traversal_updates
507 .subscribe()
508 }
509
510 /// Wait for the connection to be closed for any reason
511 ///
512 /// Despite the return type's name, closed connections are often not an error condition at the
513 /// application layer. Cases that might be routine include [`ConnectionError::LocallyClosed`]
514 /// and [`ConnectionError::ApplicationClosed`].
515 pub async fn closed(&self) -> ConnectionError {
516 {
517 let conn = self.0.state.lock("closed");
518 if let Some(error) = conn.error.as_ref() {
519 return error.clone();
520 }
521 // Construct the future while the lock is held to ensure we can't miss a wakeup if
522 // the `Notify` is signaled immediately after we release the lock. `await` it after
523 // the lock guard is out of scope.
524 self.0.shared.closed.notified()
525 }
526 .await;
527 self.0
528 .state
529 .lock("closed")
530 .error
531 .as_ref()
532 .expect("closed without an error")
533 .clone()
534 }
535
536 /// Wait for the connection to be closed without keeping a strong reference to the connection
537 ///
538 /// Returns a future that resolves, once the connection is closed, to a tuple of
539 /// ([`ConnectionError`], [`ConnectionStats`]).
540 ///
541 /// Calling [`Self::closed`] keeps the connection alive until it is either closed locally via [`Connection::close`]
542 /// or closed by the remote peer. This function instead does not keep the connection itself alive,
543 /// so if all *other* clones of the connection are dropped, the connection will be closed implicitly even
544 /// if there are futures returned from this function still being awaited.
545 pub fn on_closed(&self) -> OnClosed {
546 let (tx, rx) = oneshot::channel();
547 self.0.state.lock("on_closed").on_closed.push(tx);
548 OnClosed {
549 conn: self.weak_handle(),
550 rx,
551 }
552 }
553
554 /// If the connection is closed, the reason why.
555 ///
556 /// Returns `None` if the connection is still open.
557 pub fn close_reason(&self) -> Option<ConnectionError> {
558 self.0.state.lock("close_reason").error.clone()
559 }
560
561 /// Close the connection immediately.
562 ///
563 /// Pending operations will fail immediately with [`ConnectionError::LocallyClosed`]. No
564 /// more data is sent to the peer and the peer may drop buffered data upon receiving
565 /// the CONNECTION_CLOSE frame.
566 ///
567 /// `error_code` and `reason` are not interpreted, and are provided directly to the peer.
568 ///
569 /// `reason` will be truncated to fit in a single packet with overhead; to improve odds that it
570 /// is preserved in full, it should be kept under 1KiB.
571 ///
572 /// # Gracefully closing a connection
573 ///
574 /// Only the peer last receiving application data can be certain that all data is
575 /// delivered. The only reliable action it can then take is to close the connection,
576 /// potentially with a custom error code. The delivery of the final CONNECTION_CLOSE
577 /// frame is very likely if both endpoints stay online long enough, and
578 /// [`Endpoint::wait_idle()`] can be used to provide sufficient time. Otherwise, the
579 /// remote peer will time out the connection, provided that the idle timeout is not
580 /// disabled.
581 ///
582 /// The sending side can not guarantee all stream data is delivered to the remote
583 /// application. It only knows the data is delivered to the QUIC stack of the remote
584 /// endpoint. Once the local side sends a CONNECTION_CLOSE frame in response to calling
585 /// [`close()`] the remote endpoint may drop any data it received but is as yet
586 /// undelivered to the application, including data that was acknowledged as received to
587 /// the local endpoint.
588 ///
589 /// [`ConnectionError::LocallyClosed`]: crate::ConnectionError::LocallyClosed
590 /// [`Endpoint::wait_idle()`]: crate::Endpoint::wait_idle
591 /// [`close()`]: Connection::close
592 pub fn close(&self, error_code: VarInt, reason: &[u8]) {
593 let conn = &mut *self.0.state.lock("close");
594 conn.close(error_code, Bytes::copy_from_slice(reason), &self.0.shared);
595 }
596
597 /// Wait for the handshake to be confirmed.
598 ///
599 /// As a server, who must be authenticated by clients,
600 /// this happens when the handshake completes
601 /// upon receiving a TLS Finished message from the client.
602 /// In return, the server send a HANDSHAKE_DONE frame.
603 ///
604 /// As a client, this happens when receiving a HANDSHAKE_DONE frame.
605 /// At this point, the server has either accepted our authentication,
606 /// or, if client authentication is not required, accepted our lack of authentication.
607 pub async fn handshake_confirmed(&self) -> Result<(), ConnectionError> {
608 {
609 let conn = self.0.state.lock("handshake_confirmed");
610 if let Some(error) = conn.error.as_ref() {
611 return Err(error.clone());
612 }
613 if conn.handshake_confirmed {
614 return Ok(());
615 }
616 // Construct the future while the lock is held to ensure we can't miss a wakeup if
617 // the `Notify` is signaled immediately after we release the lock. `await` it after
618 // the lock guard is out of scope.
619 self.0.shared.handshake_confirmed.notified()
620 }
621 .await;
622 if let Some(error) = self.0.state.lock("handshake_confirmed").error.as_ref() {
623 Err(error.clone())
624 } else {
625 Ok(())
626 }
627 }
628
629 /// Transmit `data` as an unreliable, unordered application datagram
630 ///
631 /// Application datagrams are a low-level primitive. They may be lost or delivered out of order,
632 /// and `data` must both fit inside a single QUIC packet and be smaller than the maximum
633 /// dictated by the peer.
634 ///
635 /// Previously queued datagrams which are still unsent may be discarded to make space for this
636 /// datagram, in order of oldest to newest.
637 pub fn send_datagram(&self, data: Bytes) -> Result<(), SendDatagramError> {
638 let conn = &mut *self.0.state.lock("send_datagram");
639 if let Some(ref x) = conn.error {
640 return Err(SendDatagramError::ConnectionLost(x.clone()));
641 }
642 use proto::SendDatagramError::*;
643 match conn.inner.datagrams().send(data, true) {
644 Ok(()) => {
645 conn.wake();
646 Ok(())
647 }
648 Err(e) => Err(match e {
649 Blocked(..) => unreachable!(),
650 UnsupportedByPeer => SendDatagramError::UnsupportedByPeer,
651 Disabled => SendDatagramError::Disabled,
652 TooLarge => SendDatagramError::TooLarge,
653 }),
654 }
655 }
656
657 /// Transmit `data` as an unreliable, unordered application datagram
658 ///
659 /// Unlike [`send_datagram()`], this method will wait for buffer space during congestion
660 /// conditions, which effectively prioritizes old datagrams over new datagrams.
661 ///
662 /// See [`send_datagram()`] for details.
663 ///
664 /// [`send_datagram()`]: Connection::send_datagram
665 pub fn send_datagram_wait(&self, data: Bytes) -> SendDatagram<'_> {
666 SendDatagram {
667 conn: &self.0,
668 data: Some(data),
669 notify: self.0.shared.datagrams_unblocked.notified(),
670 }
671 }
672
673 /// Compute the maximum size of datagrams that may be passed to [`send_datagram()`].
674 ///
675 /// Returns `None` if datagrams are unsupported by the peer or disabled locally.
676 ///
677 /// This may change over the lifetime of a connection according to variation in the path MTU
678 /// estimate. The peer can also enforce an arbitrarily small fixed limit, but if the peer's
679 /// limit is large this is guaranteed to be a little over a kilobyte at minimum.
680 ///
681 /// Not necessarily the maximum size of received datagrams.
682 ///
683 /// [`send_datagram()`]: Connection::send_datagram
684 pub fn max_datagram_size(&self) -> Option<usize> {
685 self.0
686 .state
687 .lock("max_datagram_size")
688 .inner
689 .datagrams()
690 .max_size()
691 }
692
693 /// Bytes available in the outgoing datagram buffer
694 ///
695 /// When greater than zero, calling [`send_datagram()`](Self::send_datagram) with a datagram of
696 /// at most this size is guaranteed not to cause older datagrams to be dropped.
697 pub fn datagram_send_buffer_space(&self) -> usize {
698 self.0
699 .state
700 .lock("datagram_send_buffer_space")
701 .inner
702 .datagrams()
703 .send_buffer_space()
704 }
705
706 /// The side of the connection (client or server)
707 pub fn side(&self) -> Side {
708 self.0.state.lock("side").inner.side()
709 }
710
711 /// The peer's UDP address
712 ///
713 /// If [`ServerConfig::migration`] is `true`, clients may change addresses at will,
714 /// e.g. when switching to a cellular internet connection.
715 ///
716 /// If [`multipath`] is enabled this will return the address of *any*
717 /// path, and may not be consistent. Prefer [`Path::remote_address`] instead.
718 ///
719 /// [`ServerConfig::migration`]: crate::ServerConfig::migration
720 /// [`multipath`]: crate::TransportConfig::max_concurrent_multipath_paths
721 pub fn remote_address(&self) -> SocketAddr {
722 // TODO: an unwrap again
723 let state = self.0.state.lock("remote_address");
724 state
725 .inner
726 .paths()
727 .iter()
728 .filter_map(|id| state.inner.path_remote_address(*id).ok())
729 .next()
730 .unwrap()
731 }
732
733 /// The local IP address which was used when the peer established
734 /// the connection
735 ///
736 /// This can be different from the address the endpoint is bound to, in case
737 /// the endpoint is bound to a wildcard address like `0.0.0.0` or `::`.
738 ///
739 /// This will return `None` for clients, or when the platform does not expose this
740 /// information. See [`quinn_udp::RecvMeta::dst_ip`](udp::RecvMeta::dst_ip) for a list of
741 /// supported platforms when using [`quinn_udp`](udp) for I/O, which is the default.
742 pub fn local_ip(&self) -> Option<IpAddr> {
743 self.0.state.lock("local_ip").inner.local_ip()
744 }
745
746 /// Current best estimate of this connection's latency (round-trip-time)
747 pub fn rtt(&self, path_id: PathId) -> Option<Duration> {
748 self.0.state.lock("rtt").inner.rtt(path_id)
749 }
750
751 /// Returns connection statistics
752 pub fn stats(&self) -> ConnectionStats {
753 self.0.state.lock("stats").inner.stats()
754 }
755
756 /// Returns path statistics
757 pub fn path_stats(&self, path_id: PathId) -> Option<PathStats> {
758 self.0.state.lock("path_stats").inner.path_stats(path_id)
759 }
760
761 /// Current state of the congestion control algorithm, for debugging purposes
762 pub fn congestion_state(&self, path_id: PathId) -> Option<Box<dyn Controller>> {
763 self.0
764 .state
765 .lock("congestion_state")
766 .inner
767 .congestion_state(path_id)
768 .map(|c| c.clone_box())
769 }
770
771 /// Parameters negotiated during the handshake
772 ///
773 /// Guaranteed to return `Some` on fully established connections or after
774 /// [`Connecting::handshake_data()`] succeeds. See that method's documentations for details on
775 /// the returned value.
776 ///
777 /// [`Connection::handshake_data()`]: crate::Connecting::handshake_data
778 pub fn handshake_data(&self) -> Option<Box<dyn Any>> {
779 self.0
780 .state
781 .lock("handshake_data")
782 .inner
783 .crypto_session()
784 .handshake_data()
785 }
786
787 /// Cryptographic identity of the peer
788 ///
789 /// The dynamic type returned is determined by the configured
790 /// [`Session`](proto::crypto::Session). For the default `rustls` session, the return value can
791 /// be [`downcast`](Box::downcast) to a <code>Vec<[rustls::pki_types::CertificateDer]></code>
792 pub fn peer_identity(&self) -> Option<Box<dyn Any>> {
793 self.0
794 .state
795 .lock("peer_identity")
796 .inner
797 .crypto_session()
798 .peer_identity()
799 }
800
801 /// A stable identifier for this connection
802 ///
803 /// Peer addresses and connection IDs can change, but this value will remain
804 /// fixed for the lifetime of the connection.
805 pub fn stable_id(&self) -> usize {
806 self.0.stable_id()
807 }
808
809 /// Update traffic keys spontaneously
810 ///
811 /// This primarily exists for testing purposes.
812 pub fn force_key_update(&self) {
813 self.0
814 .state
815 .lock("force_key_update")
816 .inner
817 .force_key_update()
818 }
819
820 /// Derive keying material from this connection's TLS session secrets.
821 ///
822 /// When both peers call this method with the same `label` and `context`
823 /// arguments and `output` buffers of equal length, they will get the
824 /// same sequence of bytes in `output`. These bytes are cryptographically
825 /// strong and pseudorandom, and are suitable for use as keying material.
826 ///
827 /// See [RFC5705](https://tools.ietf.org/html/rfc5705) for more information.
828 pub fn export_keying_material(
829 &self,
830 output: &mut [u8],
831 label: &[u8],
832 context: &[u8],
833 ) -> Result<(), proto::crypto::ExportKeyingMaterialError> {
834 self.0
835 .state
836 .lock("export_keying_material")
837 .inner
838 .crypto_session()
839 .export_keying_material(output, label, context)
840 }
841
842 /// Modify the number of remotely initiated unidirectional streams that may be concurrently open
843 ///
844 /// No streams may be opened by the peer unless fewer than `count` are already open. Large
845 /// `count`s increase both minimum and worst-case memory consumption.
846 pub fn set_max_concurrent_uni_streams(&self, count: VarInt) {
847 let mut conn = self.0.state.lock("set_max_concurrent_uni_streams");
848 conn.inner.set_max_concurrent_streams(Dir::Uni, count);
849 // May need to send MAX_STREAMS to make progress
850 conn.wake();
851 }
852
853 /// See [`proto::TransportConfig::send_window()`]
854 pub fn set_send_window(&self, send_window: u64) {
855 let mut conn = self.0.state.lock("set_send_window");
856 conn.inner.set_send_window(send_window);
857 conn.wake();
858 }
859
860 /// See [`proto::TransportConfig::receive_window()`]
861 pub fn set_receive_window(&self, receive_window: VarInt) {
862 let mut conn = self.0.state.lock("set_receive_window");
863 conn.inner.set_receive_window(receive_window);
864 conn.wake();
865 }
866
867 /// Modify the number of remotely initiated bidirectional streams that may be concurrently open
868 ///
869 /// No streams may be opened by the peer unless fewer than `count` are already open. Large
870 /// `count`s increase both minimum and worst-case memory consumption.
871 pub fn set_max_concurrent_bi_streams(&self, count: VarInt) {
872 let mut conn = self.0.state.lock("set_max_concurrent_bi_streams");
873 conn.inner.set_max_concurrent_streams(Dir::Bi, count);
874 // May need to send MAX_STREAMS to make progress
875 conn.wake();
876 }
877
878 /// Track changed on our external address as reported by the peer.
879 pub fn observed_external_addr(&self) -> watch::Receiver<Option<SocketAddr>> {
880 let conn = self.0.state.lock("external_addr");
881 conn.observed_external_addr.subscribe()
882 }
883
884 /// Is multipath enabled?
885 // TODO(flub): not a useful API, once we do real things with multipath we can remove
886 // this again.
887 pub fn is_multipath_enabled(&self) -> bool {
888 let conn = self.0.state.lock("is_multipath_enabled");
889 conn.inner.is_multipath_negotiated()
890 }
891
892 /// Registers one address at which this endpoint might be reachable
893 ///
894 /// When the NAT traversal extension is negotiated, servers send these addresses to clients in
895 /// `ADD_ADDRESS` frames. This allows clients to obtain server address candidates to initiate
896 /// NAT traversal attempts. Clients provide their own reachable addresses in `REACH_OUT` frames
897 /// when [`Self::initiate_nat_traversal_round`] is called.
898 pub fn add_nat_traversal_address(&self, address: SocketAddr) -> Result<(), iroh_hp::Error> {
899 let mut conn = self.0.state.lock("add_nat_traversal_addresses");
900 conn.inner.add_nat_traversal_address(address)
901 }
902
903 /// Removes one or more addresses from the set of addresses at which this endpoint is reachable
904 ///
905 /// When the NAT traversal extension is negotiated, servers send address removals to
906 /// clients in `REMOVE_ADDRESS` frames. This allows clients to stop using outdated
907 /// server address candidates that are no longer valid for NAT traversal.
908 ///
909 /// For clients, removed addresses will no longer be advertised in `REACH_OUT` frames.
910 ///
911 /// Addresses not present in the set will be silently ignored.
912 pub fn remove_nat_traversal_address(&self, address: SocketAddr) -> Result<(), iroh_hp::Error> {
913 let mut conn = self.0.state.lock("remove_nat_traversal_addresses");
914 conn.inner.remove_nat_traversal_address(address)
915 }
916
917 /// Get the current local nat traversal addresses
918 pub fn get_local_nat_traversal_addresses(&self) -> Result<Vec<SocketAddr>, iroh_hp::Error> {
919 let conn = self.0.state.lock("get_local_nat_traversal_addresses");
920 conn.inner.get_local_nat_traversal_addresses()
921 }
922
923 /// Get the currently advertised nat traversal addresses by the server
924 pub fn get_remote_nat_traversal_addresses(&self) -> Result<Vec<SocketAddr>, iroh_hp::Error> {
925 let conn = self.0.state.lock("get_remote_nat_traversal_addresses");
926 conn.inner.get_remote_nat_traversal_addresses()
927 }
928
929 /// Initiates a new nat traversal round
930 ///
931 /// A nat traversal round involves advertising the client's local addresses in `REACH_OUT`
932 /// frames, and initiating probing of the known remote addresses. When a new round is
933 /// initiated, the previous one is cancelled, and paths that have not been opened are closed.
934 ///
935 /// Returns the server addresses that are now being probed.
936 pub fn initiate_nat_traversal_round(&self) -> Result<Vec<SocketAddr>, iroh_hp::Error> {
937 let mut conn = self.0.state.lock("initiate_nat_traversal_round");
938 let now = conn.runtime.now();
939 conn.inner.initiate_nat_traversal_round(now)
940 }
941}
942
943pin_project! {
944 /// Future produced by [`Connection::open_uni`]
945 pub struct OpenUni<'a> {
946 conn: &'a ConnectionRef,
947 #[pin]
948 notify: Notified<'a>,
949 }
950}
951
952impl Future for OpenUni<'_> {
953 type Output = Result<SendStream, ConnectionError>;
954 fn poll(self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Self::Output> {
955 let this = self.project();
956 let (conn, id, is_0rtt) = ready!(poll_open(ctx, this.conn, this.notify, Dir::Uni))?;
957 Poll::Ready(Ok(SendStream::new(conn, id, is_0rtt)))
958 }
959}
960
961pin_project! {
962 /// Future produced by [`Connection::open_bi`]
963 pub struct OpenBi<'a> {
964 conn: &'a ConnectionRef,
965 #[pin]
966 notify: Notified<'a>,
967 }
968}
969
970impl Future for OpenBi<'_> {
971 type Output = Result<(SendStream, RecvStream), ConnectionError>;
972 fn poll(self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Self::Output> {
973 let this = self.project();
974 let (conn, id, is_0rtt) = ready!(poll_open(ctx, this.conn, this.notify, Dir::Bi))?;
975
976 Poll::Ready(Ok((
977 SendStream::new(conn.clone(), id, is_0rtt),
978 RecvStream::new(conn, id, is_0rtt),
979 )))
980 }
981}
982
983fn poll_open<'a>(
984 ctx: &mut Context<'_>,
985 conn: &'a ConnectionRef,
986 mut notify: Pin<&mut Notified<'a>>,
987 dir: Dir,
988) -> Poll<Result<(ConnectionRef, StreamId, bool), ConnectionError>> {
989 let mut state = conn.state.lock("poll_open");
990 if let Some(ref e) = state.error {
991 return Poll::Ready(Err(e.clone()));
992 } else if let Some(id) = state.inner.streams().open(dir) {
993 let is_0rtt = state.inner.side().is_client() && state.inner.is_handshaking();
994 drop(state); // Release the lock so clone can take it
995 return Poll::Ready(Ok((conn.clone(), id, is_0rtt)));
996 }
997 loop {
998 match notify.as_mut().poll(ctx) {
999 // `state` lock ensures we didn't race with readiness
1000 Poll::Pending => return Poll::Pending,
1001 // Spurious wakeup, get a new future
1002 Poll::Ready(()) => {
1003 notify.set(conn.shared.stream_budget_available[dir as usize].notified())
1004 }
1005 }
1006 }
1007}
1008
1009pin_project! {
1010 /// Future produced by [`Connection::accept_uni`]
1011 pub struct AcceptUni<'a> {
1012 conn: &'a ConnectionRef,
1013 #[pin]
1014 notify: Notified<'a>,
1015 }
1016}
1017
1018impl Future for AcceptUni<'_> {
1019 type Output = Result<RecvStream, ConnectionError>;
1020
1021 fn poll(self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Self::Output> {
1022 let this = self.project();
1023 let (conn, id, is_0rtt) = ready!(poll_accept(ctx, this.conn, this.notify, Dir::Uni))?;
1024 Poll::Ready(Ok(RecvStream::new(conn, id, is_0rtt)))
1025 }
1026}
1027
1028pin_project! {
1029 /// Future produced by [`Connection::accept_bi`]
1030 pub struct AcceptBi<'a> {
1031 conn: &'a ConnectionRef,
1032 #[pin]
1033 notify: Notified<'a>,
1034 }
1035}
1036
1037impl Future for AcceptBi<'_> {
1038 type Output = Result<(SendStream, RecvStream), ConnectionError>;
1039
1040 fn poll(self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Self::Output> {
1041 let this = self.project();
1042 let (conn, id, is_0rtt) = ready!(poll_accept(ctx, this.conn, this.notify, Dir::Bi))?;
1043 Poll::Ready(Ok((
1044 SendStream::new(conn.clone(), id, is_0rtt),
1045 RecvStream::new(conn, id, is_0rtt),
1046 )))
1047 }
1048}
1049
1050fn poll_accept<'a>(
1051 ctx: &mut Context<'_>,
1052 conn: &'a ConnectionRef,
1053 mut notify: Pin<&mut Notified<'a>>,
1054 dir: Dir,
1055) -> Poll<Result<(ConnectionRef, StreamId, bool), ConnectionError>> {
1056 let mut state = conn.state.lock("poll_accept");
1057 // Check for incoming streams before checking `state.error` so that already-received streams,
1058 // which are necessarily finite, can be drained from a closed connection.
1059 if let Some(id) = state.inner.streams().accept(dir) {
1060 let is_0rtt = state.inner.is_handshaking();
1061 state.wake(); // To send additional stream ID credit
1062 drop(state); // Release the lock so clone can take it
1063 return Poll::Ready(Ok((conn.clone(), id, is_0rtt)));
1064 } else if let Some(ref e) = state.error {
1065 return Poll::Ready(Err(e.clone()));
1066 }
1067 loop {
1068 match notify.as_mut().poll(ctx) {
1069 // `state` lock ensures we didn't race with readiness
1070 Poll::Pending => return Poll::Pending,
1071 // Spurious wakeup, get a new future
1072 Poll::Ready(()) => notify.set(conn.shared.stream_incoming[dir as usize].notified()),
1073 }
1074 }
1075}
1076
1077pin_project! {
1078 /// Future produced by [`Connection::read_datagram`]
1079 pub struct ReadDatagram<'a> {
1080 conn: &'a ConnectionRef,
1081 #[pin]
1082 notify: Notified<'a>,
1083 }
1084}
1085
1086impl Future for ReadDatagram<'_> {
1087 type Output = Result<Bytes, ConnectionError>;
1088 fn poll(self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Self::Output> {
1089 let mut this = self.project();
1090 let mut state = this.conn.state.lock("ReadDatagram::poll");
1091 // Check for buffered datagrams before checking `state.error` so that already-received
1092 // datagrams, which are necessarily finite, can be drained from a closed connection.
1093 if let Some(x) = state.inner.datagrams().recv() {
1094 return Poll::Ready(Ok(x));
1095 } else if let Some(ref e) = state.error {
1096 return Poll::Ready(Err(e.clone()));
1097 }
1098 loop {
1099 match this.notify.as_mut().poll(ctx) {
1100 // `state` lock ensures we didn't race with readiness
1101 Poll::Pending => return Poll::Pending,
1102 // Spurious wakeup, get a new future
1103 Poll::Ready(()) => this
1104 .notify
1105 .set(this.conn.shared.datagram_received.notified()),
1106 }
1107 }
1108 }
1109}
1110
1111pin_project! {
1112 /// Future produced by [`Connection::send_datagram_wait`]
1113 pub struct SendDatagram<'a> {
1114 conn: &'a ConnectionRef,
1115 data: Option<Bytes>,
1116 #[pin]
1117 notify: Notified<'a>,
1118 }
1119}
1120
1121impl Future for SendDatagram<'_> {
1122 type Output = Result<(), SendDatagramError>;
1123 fn poll(self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Self::Output> {
1124 let mut this = self.project();
1125 let mut state = this.conn.state.lock("SendDatagram::poll");
1126 if let Some(ref e) = state.error {
1127 return Poll::Ready(Err(SendDatagramError::ConnectionLost(e.clone())));
1128 }
1129 use proto::SendDatagramError::*;
1130 match state
1131 .inner
1132 .datagrams()
1133 .send(this.data.take().unwrap(), false)
1134 {
1135 Ok(()) => {
1136 state.wake();
1137 Poll::Ready(Ok(()))
1138 }
1139 Err(e) => Poll::Ready(Err(match e {
1140 Blocked(data) => {
1141 this.data.replace(data);
1142 loop {
1143 match this.notify.as_mut().poll(ctx) {
1144 Poll::Pending => return Poll::Pending,
1145 // Spurious wakeup, get a new future
1146 Poll::Ready(()) => this
1147 .notify
1148 .set(this.conn.shared.datagrams_unblocked.notified()),
1149 }
1150 }
1151 }
1152 UnsupportedByPeer => SendDatagramError::UnsupportedByPeer,
1153 Disabled => SendDatagramError::Disabled,
1154 TooLarge => SendDatagramError::TooLarge,
1155 })),
1156 }
1157 }
1158}
1159
1160/// Future returned by [`Connection::on_closed`]
1161///
1162/// Resolves to a tuple of ([`ConnectionError`], [`ConnectionStats`]).
1163pub struct OnClosed {
1164 rx: oneshot::Receiver<(ConnectionError, ConnectionStats)>,
1165 conn: WeakConnectionHandle,
1166}
1167
1168impl Drop for OnClosed {
1169 fn drop(&mut self) {
1170 if self.rx.is_terminated() {
1171 return;
1172 };
1173 if let Some(conn) = self.conn.upgrade() {
1174 self.rx.close();
1175 conn.0
1176 .state
1177 .lock("OnClosed::drop")
1178 .on_closed
1179 .retain(|tx| !tx.is_closed());
1180 }
1181 }
1182}
1183
1184impl Future for OnClosed {
1185 type Output = (ConnectionError, ConnectionStats);
1186
1187 fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
1188 let this = self.get_mut();
1189 // The `expect` is safe because `State::drop` ensures that all senders are triggered
1190 // before being dropped.
1191 Pin::new(&mut this.rx)
1192 .poll(cx)
1193 .map(|x| x.expect("on_close sender is never dropped before sending"))
1194 }
1195}
1196
1197#[derive(Debug)]
1198pub(crate) struct ConnectionRef(Arc<ConnectionInner>);
1199
1200impl ConnectionRef {
1201 fn from_arc(inner: Arc<ConnectionInner>) -> Self {
1202 inner.state.lock("from_arc").ref_count += 1;
1203 Self(inner)
1204 }
1205
1206 fn stable_id(&self) -> usize {
1207 &*self.0 as *const _ as usize
1208 }
1209}
1210
1211impl Clone for ConnectionRef {
1212 fn clone(&self) -> Self {
1213 Self::from_arc(Arc::clone(&self.0))
1214 }
1215}
1216
1217impl Drop for ConnectionRef {
1218 fn drop(&mut self) {
1219 let conn = &mut *self.state.lock("drop");
1220 if let Some(x) = conn.ref_count.checked_sub(1) {
1221 conn.ref_count = x;
1222 if x == 0 && !conn.inner.is_closed() {
1223 // If the driver is alive, it's just it and us, so we'd better shut it down. If it's
1224 // not, we can't do any harm. If there were any streams being opened, then either
1225 // the connection will be closed for an unrelated reason or a fresh reference will
1226 // be constructed for the newly opened stream.
1227 conn.implicit_close(&self.shared);
1228 }
1229 }
1230 }
1231}
1232
1233impl std::ops::Deref for ConnectionRef {
1234 type Target = ConnectionInner;
1235 fn deref(&self) -> &Self::Target {
1236 &self.0
1237 }
1238}
1239
1240#[derive(Debug)]
1241pub(crate) struct ConnectionInner {
1242 pub(crate) state: Mutex<State>,
1243 pub(crate) shared: Shared,
1244}
1245
1246/// A handle to some connection internals, use with care.
1247///
1248/// This contains a weak reference to the connection so will not itself keep the connection
1249/// alive.
1250#[derive(Debug, Clone)]
1251pub struct WeakConnectionHandle(Weak<ConnectionInner>);
1252
1253impl WeakConnectionHandle {
1254 /// Returns `true` if the [`Connection`] associated with this handle is still alive.
1255 pub fn is_alive(&self) -> bool {
1256 self.0.upgrade().is_some()
1257 }
1258
1259 /// Upgrade the handle to a full `Connection`
1260 pub fn upgrade(&self) -> Option<Connection> {
1261 self.0
1262 .upgrade()
1263 .map(|inner| Connection(ConnectionRef::from_arc(inner)))
1264 }
1265}
1266
1267#[derive(Debug, Default)]
1268pub(crate) struct Shared {
1269 handshake_confirmed: Notify,
1270 /// Notified when new streams may be locally initiated due to an increase in stream ID flow
1271 /// control budget
1272 stream_budget_available: [Notify; 2],
1273 /// Notified when the peer has initiated a new stream
1274 stream_incoming: [Notify; 2],
1275 datagram_received: Notify,
1276 datagrams_unblocked: Notify,
1277 closed: Notify,
1278}
1279
1280pub(crate) struct State {
1281 pub(crate) inner: proto::Connection,
1282 driver: Option<Waker>,
1283 handle: ConnectionHandle,
1284 on_handshake_data: Option<oneshot::Sender<()>>,
1285 on_connected: Option<oneshot::Sender<bool>>,
1286 connected: bool,
1287 handshake_confirmed: bool,
1288 timer: Option<Pin<Box<dyn AsyncTimer>>>,
1289 timer_deadline: Option<Instant>,
1290 conn_events: mpsc::UnboundedReceiver<ConnectionEvent>,
1291 endpoint_events: mpsc::UnboundedSender<(ConnectionHandle, EndpointEvent)>,
1292 pub(crate) blocked_writers: FxHashMap<StreamId, Waker>,
1293 pub(crate) blocked_readers: FxHashMap<StreamId, Waker>,
1294 pub(crate) stopped: FxHashMap<StreamId, Arc<Notify>>,
1295 /// Always set to Some before the connection becomes drained
1296 pub(crate) error: Option<ConnectionError>,
1297 /// Tracks paths being opened
1298 open_path: FxHashMap<PathId, watch::Sender<Result<(), PathError>>>,
1299 /// Tracks paths being closed
1300 pub(crate) close_path: FxHashMap<PathId, oneshot::Sender<VarInt>>,
1301 pub(crate) path_events: tokio::sync::broadcast::Sender<PathEvent>,
1302 /// Number of live handles that can be used to initiate or handle I/O; excludes the driver
1303 ref_count: usize,
1304 sender: Pin<Box<dyn UdpSender>>,
1305 pub(crate) runtime: Arc<dyn Runtime>,
1306 send_buffer: Vec<u8>,
1307 /// We buffer a transmit when the underlying I/O would block
1308 buffered_transmit: Option<proto::Transmit>,
1309 /// Our last external address reported by the peer. When multipath is enabled, this will be the
1310 /// last report across all paths.
1311 pub(crate) observed_external_addr: watch::Sender<Option<SocketAddr>>,
1312 pub(crate) nat_traversal_updates: tokio::sync::broadcast::Sender<iroh_hp::Event>,
1313 on_closed: Vec<oneshot::Sender<(ConnectionError, ConnectionStats)>>,
1314}
1315
1316impl State {
1317 #[allow(clippy::too_many_arguments)]
1318 fn new(
1319 inner: proto::Connection,
1320 handle: ConnectionHandle,
1321 endpoint_events: mpsc::UnboundedSender<(ConnectionHandle, EndpointEvent)>,
1322 conn_events: mpsc::UnboundedReceiver<ConnectionEvent>,
1323 on_handshake_data: oneshot::Sender<()>,
1324 on_connected: oneshot::Sender<bool>,
1325 sender: Pin<Box<dyn UdpSender>>,
1326 runtime: Arc<dyn Runtime>,
1327 ) -> Self {
1328 Self {
1329 inner,
1330 driver: None,
1331 handle,
1332 on_handshake_data: Some(on_handshake_data),
1333 on_connected: Some(on_connected),
1334 connected: false,
1335 handshake_confirmed: false,
1336 timer: None,
1337 timer_deadline: None,
1338 conn_events,
1339 endpoint_events,
1340 blocked_writers: FxHashMap::default(),
1341 blocked_readers: FxHashMap::default(),
1342 stopped: FxHashMap::default(),
1343 open_path: FxHashMap::default(),
1344 close_path: FxHashMap::default(),
1345 error: None,
1346 ref_count: 0,
1347 sender,
1348 runtime,
1349 send_buffer: Vec::new(),
1350 buffered_transmit: None,
1351 path_events: tokio::sync::broadcast::channel(32).0,
1352 observed_external_addr: watch::Sender::new(None),
1353 nat_traversal_updates: tokio::sync::broadcast::channel(32).0,
1354 on_closed: Vec::new(),
1355 }
1356 }
1357
1358 fn drive_transmit(&mut self, cx: &mut Context) -> io::Result<bool> {
1359 let now = self.runtime.now();
1360 let mut transmits = 0;
1361
1362 let max_datagrams = self
1363 .sender
1364 .max_transmit_segments()
1365 .min(MAX_TRANSMIT_SEGMENTS);
1366
1367 loop {
1368 // Retry the last transmit, or get a new one.
1369 let t = match self.buffered_transmit.take() {
1370 Some(t) => t,
1371 None => {
1372 self.send_buffer.clear();
1373 match self
1374 .inner
1375 .poll_transmit(now, max_datagrams, &mut self.send_buffer)
1376 {
1377 Some(t) => {
1378 transmits += match t.segment_size {
1379 None => 1,
1380 Some(s) => t.size.div_ceil(s), // round up
1381 };
1382 t
1383 }
1384 None => break,
1385 }
1386 }
1387 };
1388
1389 let len = t.size;
1390 match self
1391 .sender
1392 .as_mut()
1393 .poll_send(&udp_transmit(&t, &self.send_buffer[..len]), cx)
1394 {
1395 Poll::Pending => {
1396 self.buffered_transmit = Some(t);
1397 return Ok(false);
1398 }
1399 Poll::Ready(Err(e)) => return Err(e),
1400 Poll::Ready(Ok(())) => {}
1401 }
1402
1403 if transmits >= MAX_TRANSMIT_DATAGRAMS {
1404 // TODO: What isn't ideal here yet is that if we don't poll all
1405 // datagrams that could be sent we don't go into the `app_limited`
1406 // state and CWND continues to grow until we get here the next time.
1407 // See https://github.com/quinn-rs/quinn/issues/1126
1408 return Ok(true);
1409 }
1410 }
1411
1412 Ok(false)
1413 }
1414
1415 fn forward_endpoint_events(&mut self) {
1416 while let Some(event) = self.inner.poll_endpoint_events() {
1417 // If the endpoint driver is gone, noop.
1418 let _ = self.endpoint_events.send((self.handle, event));
1419 }
1420 }
1421
1422 /// If this returns `Err`, the endpoint is dead, so the driver should exit immediately.
1423 fn process_conn_events(
1424 &mut self,
1425 shared: &Shared,
1426 cx: &mut Context,
1427 ) -> Result<(), ConnectionError> {
1428 loop {
1429 match self.conn_events.poll_recv(cx) {
1430 Poll::Ready(Some(ConnectionEvent::Rebind(sender))) => {
1431 self.sender = sender;
1432 self.inner.local_address_changed();
1433 }
1434 Poll::Ready(Some(ConnectionEvent::Proto(event))) => {
1435 self.inner.handle_event(event);
1436 }
1437 Poll::Ready(Some(ConnectionEvent::Close { reason, error_code })) => {
1438 self.close(error_code, reason, shared);
1439 }
1440 Poll::Ready(None) => {
1441 return Err(ConnectionError::TransportError(TransportError::new(
1442 TransportErrorCode::INTERNAL_ERROR,
1443 "endpoint driver future was dropped".to_string(),
1444 )));
1445 }
1446 Poll::Pending => {
1447 return Ok(());
1448 }
1449 }
1450 }
1451 }
1452
1453 fn forward_app_events(&mut self, shared: &Shared) {
1454 while let Some(event) = self.inner.poll() {
1455 use proto::Event::*;
1456 match event {
1457 HandshakeDataReady => {
1458 if let Some(x) = self.on_handshake_data.take() {
1459 let _ = x.send(());
1460 }
1461 }
1462 Connected => {
1463 self.connected = true;
1464 if let Some(x) = self.on_connected.take() {
1465 // We don't care if the on-connected future was dropped
1466 let _ = x.send(self.inner.accepted_0rtt());
1467 }
1468 if self.inner.side().is_client() && !self.inner.accepted_0rtt() {
1469 // Wake up rejected 0-RTT streams so they can fail immediately with
1470 // `ZeroRttRejected` errors.
1471 wake_all(&mut self.blocked_writers);
1472 wake_all(&mut self.blocked_readers);
1473 wake_all_notify(&mut self.stopped);
1474 }
1475 }
1476 HandshakeConfirmed => {
1477 self.handshake_confirmed = true;
1478 shared.handshake_confirmed.notify_waiters();
1479 }
1480 ConnectionLost { reason } => {
1481 self.terminate(reason, shared);
1482 }
1483 Stream(StreamEvent::Writable { id }) => wake_stream(id, &mut self.blocked_writers),
1484 Stream(StreamEvent::Opened { dir: Dir::Uni }) => {
1485 shared.stream_incoming[Dir::Uni as usize].notify_waiters();
1486 }
1487 Stream(StreamEvent::Opened { dir: Dir::Bi }) => {
1488 shared.stream_incoming[Dir::Bi as usize].notify_waiters();
1489 }
1490 DatagramReceived => {
1491 shared.datagram_received.notify_waiters();
1492 }
1493 DatagramsUnblocked => {
1494 shared.datagrams_unblocked.notify_waiters();
1495 }
1496 Stream(StreamEvent::Readable { id }) => wake_stream(id, &mut self.blocked_readers),
1497 Stream(StreamEvent::Available { dir }) => {
1498 // Might mean any number of streams are ready, so we wake up everyone
1499 shared.stream_budget_available[dir as usize].notify_waiters();
1500 }
1501 Stream(StreamEvent::Finished { id }) => wake_stream_notify(id, &mut self.stopped),
1502 Stream(StreamEvent::Stopped { id, .. }) => {
1503 wake_stream_notify(id, &mut self.stopped);
1504 wake_stream(id, &mut self.blocked_writers);
1505 }
1506 Path(ref evt @ PathEvent::ObservedAddr { addr: observed, .. }) => {
1507 self.path_events.send(evt.clone()).ok();
1508 self.observed_external_addr.send_if_modified(|addr| {
1509 let old = addr.replace(observed);
1510 old != *addr
1511 });
1512 }
1513 Path(ref evt @ PathEvent::Opened { id }) => {
1514 self.path_events.send(evt.clone()).ok();
1515 if let Some(sender) = self.open_path.remove(&id) {
1516 sender.send_modify(|value| *value = Ok(()));
1517 }
1518 }
1519 Path(ref evt @ PathEvent::Closed { id, error_code }) => {
1520 self.path_events.send(evt.clone()).ok();
1521 if let Some(sender) = self.close_path.remove(&id) {
1522 let _ = sender.send(error_code);
1523 }
1524 }
1525 Path(evt @ PathEvent::Abandoned { .. }) => {
1526 self.path_events.send(evt).ok();
1527 }
1528 Path(ref evt @ PathEvent::LocallyClosed { id, error }) => {
1529 self.path_events.send(evt.clone()).ok();
1530 if let Some(sender) = self.open_path.remove(&id) {
1531 sender.send_modify(|value| *value = Err(error));
1532 }
1533 // this will happen also for already opened paths
1534 }
1535 Path(evt @ PathEvent::RemoteStatus { .. }) => {
1536 self.path_events.send(evt).ok();
1537 }
1538 NatTraversal(update) => {
1539 self.nat_traversal_updates.send(update).ok();
1540 }
1541 }
1542 }
1543 }
1544
1545 fn drive_timer(&mut self, cx: &mut Context) -> bool {
1546 // Check whether we need to (re)set the timer. If so, we must poll again to ensure the
1547 // timer is registered with the runtime (and check whether it's already
1548 // expired).
1549 match self.inner.poll_timeout() {
1550 Some(deadline) => {
1551 if let Some(delay) = &mut self.timer {
1552 // There is no need to reset the tokio timer if the deadline
1553 // did not change
1554 if self
1555 .timer_deadline
1556 .map(|current_deadline| current_deadline != deadline)
1557 .unwrap_or(true)
1558 {
1559 delay.as_mut().reset(deadline);
1560 }
1561 } else {
1562 self.timer = Some(self.runtime.new_timer(deadline));
1563 }
1564 // Store the actual expiration time of the timer
1565 self.timer_deadline = Some(deadline);
1566 }
1567 None => {
1568 self.timer_deadline = None;
1569 return false;
1570 }
1571 }
1572
1573 if self.timer_deadline.is_none() {
1574 return false;
1575 }
1576
1577 let delay = self
1578 .timer
1579 .as_mut()
1580 .expect("timer must exist in this state")
1581 .as_mut();
1582 if delay.poll(cx).is_pending() {
1583 // Since there wasn't a timeout event, there is nothing new
1584 // for the connection to do
1585 return false;
1586 }
1587
1588 // A timer expired, so the caller needs to check for
1589 // new transmits, which might cause new timers to be set.
1590 self.inner.handle_timeout(self.runtime.now());
1591 self.timer_deadline = None;
1592 true
1593 }
1594
1595 /// Wake up a blocked `Driver` task to process I/O
1596 pub(crate) fn wake(&mut self) {
1597 if let Some(x) = self.driver.take() {
1598 x.wake();
1599 }
1600 }
1601
1602 /// Used to wake up all blocked futures when the connection becomes closed for any reason
1603 fn terminate(&mut self, reason: ConnectionError, shared: &Shared) {
1604 self.error = Some(reason.clone());
1605 if let Some(x) = self.on_handshake_data.take() {
1606 let _ = x.send(());
1607 }
1608 wake_all(&mut self.blocked_writers);
1609 wake_all(&mut self.blocked_readers);
1610 shared.stream_budget_available[Dir::Uni as usize].notify_waiters();
1611 shared.stream_budget_available[Dir::Bi as usize].notify_waiters();
1612 shared.stream_incoming[Dir::Uni as usize].notify_waiters();
1613 shared.stream_incoming[Dir::Bi as usize].notify_waiters();
1614 shared.datagram_received.notify_waiters();
1615 shared.datagrams_unblocked.notify_waiters();
1616 if let Some(x) = self.on_connected.take() {
1617 let _ = x.send(false);
1618 }
1619 shared.handshake_confirmed.notify_waiters();
1620 wake_all_notify(&mut self.stopped);
1621 shared.closed.notify_waiters();
1622
1623 // Send to the registered on_closed futures.
1624 let stats = self.inner.stats();
1625 for tx in self.on_closed.drain(..) {
1626 tx.send((reason.clone(), stats.clone())).ok();
1627 }
1628 }
1629
1630 fn close(&mut self, error_code: VarInt, reason: Bytes, shared: &Shared) {
1631 self.inner.close(self.runtime.now(), error_code, reason);
1632 self.terminate(ConnectionError::LocallyClosed, shared);
1633 self.wake();
1634 }
1635
1636 /// Close for a reason other than the application's explicit request
1637 pub(crate) fn implicit_close(&mut self, shared: &Shared) {
1638 self.close(0u32.into(), Bytes::new(), shared);
1639 }
1640
1641 pub(crate) fn check_0rtt(&self) -> Result<(), ()> {
1642 if self.inner.is_handshaking()
1643 || self.inner.accepted_0rtt()
1644 || self.inner.side().is_server()
1645 {
1646 Ok(())
1647 } else {
1648 Err(())
1649 }
1650 }
1651}
1652
1653impl Drop for State {
1654 fn drop(&mut self) {
1655 if !self.inner.is_drained() {
1656 // Ensure the endpoint can tidy up
1657 let _ = self
1658 .endpoint_events
1659 .send((self.handle, proto::EndpointEvent::drained()));
1660 }
1661
1662 if !self.on_closed.is_empty() {
1663 // Ensure that all on_closed oneshot senders are triggered before dropping.
1664 let reason = self.error.as_ref().expect("closed without error reason");
1665 let stats = self.inner.stats();
1666 for tx in self.on_closed.drain(..) {
1667 tx.send((reason.clone(), stats.clone())).ok();
1668 }
1669 }
1670 }
1671}
1672
1673impl fmt::Debug for State {
1674 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1675 f.debug_struct("State").field("inner", &self.inner).finish()
1676 }
1677}
1678
1679fn wake_stream(stream_id: StreamId, wakers: &mut FxHashMap<StreamId, Waker>) {
1680 if let Some(waker) = wakers.remove(&stream_id) {
1681 waker.wake();
1682 }
1683}
1684
1685fn wake_all(wakers: &mut FxHashMap<StreamId, Waker>) {
1686 wakers.drain().for_each(|(_, waker)| waker.wake())
1687}
1688
1689fn wake_stream_notify(stream_id: StreamId, wakers: &mut FxHashMap<StreamId, Arc<Notify>>) {
1690 if let Some(notify) = wakers.remove(&stream_id) {
1691 notify.notify_waiters()
1692 }
1693}
1694
1695fn wake_all_notify(wakers: &mut FxHashMap<StreamId, Arc<Notify>>) {
1696 wakers
1697 .drain()
1698 .for_each(|(_, notify)| notify.notify_waiters())
1699}
1700
1701/// Errors that can arise when sending a datagram
1702#[derive(Debug, Error, Clone, Eq, PartialEq)]
1703pub enum SendDatagramError {
1704 /// The peer does not support receiving datagram frames
1705 #[error("datagrams not supported by peer")]
1706 UnsupportedByPeer,
1707 /// Datagram support is disabled locally
1708 #[error("datagram support disabled")]
1709 Disabled,
1710 /// The datagram is larger than the connection can currently accommodate
1711 ///
1712 /// Indicates that the path MTU minus overhead or the limit advertised by the peer has been
1713 /// exceeded.
1714 #[error("datagram too large")]
1715 TooLarge,
1716 /// The connection was lost
1717 #[error("connection lost")]
1718 ConnectionLost(#[from] ConnectionError),
1719}
1720
1721/// The maximum amount of datagrams which will be produced in a single `drive_transmit` call
1722///
1723/// This limits the amount of CPU resources consumed by datagram generation,
1724/// and allows other tasks (like receiving ACKs) to run in between.
1725const MAX_TRANSMIT_DATAGRAMS: usize = 20;
1726
1727/// The maximum amount of datagrams that are sent in a single transmit
1728///
1729/// This can be lower than the maximum platform capabilities, to avoid excessive
1730/// memory allocations when calling `poll_transmit()`. Benchmarks have shown
1731/// that numbers around 10 are a good compromise.
1732const MAX_TRANSMIT_SEGMENTS: NonZeroUsize = NonZeroUsize::new(10).expect("known");